Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review

Electrocoagulación como tecnología emergente al tratamiento de las aguas residuales en distintas industrias: una revisión

Autores/as

Palabras clave:

Wastewater, electrocoagulation, quality properties, operating parameters, optimal conditions, electrocoagulation systems (en).

Palabras clave:

Aguas residuales, electrocoagulación, propiedades de calidad, parámetros operativos, condiciones óptimas, sistemas de electrocoagulación (es).

Resumen (en)

The electrocoagulation (EC) technique has been considered a popular treatment alternative for the effective separation of organic and inorganic contaminants. This technique generates coagulating particles in situ through the electrolysis of a sacrificial anode that destabilizes suspended, dissolved, or emulsified contaminants in a liquid medium by inducing an electric field. EC has been widely studied due to its versatility, ease of installation, lower cost, and for being an environmentally friendly technology. For this article, a search and information-gathering phase was conducted in which Scopus, ScienceDirect, and Google Scholar were identified as the necessary tools for locating information on the electrocoagulation process as a wastewater treatment in various industries. This paper reviews studies on advances in EC applied to different types of industrial wastewater, focusing on evaluating the operating variables and optimal treatment conditions that are vital to the process. Likewise, the effect of the electrocoagulation on the quality properties of wastewater from different sectors is examined, considering factors such as current density, pH, reactor geometry, treatment time, and electrode spacing.
Objective: To determine the effect of the electrocoagulation process on the quality properties of wastewater from various industries as a function of physicochemical and geometric parameters.
Methodology: A search and information-gathering phase was carried out using Scopus, Sciencedirect, and Google Scholar as the main sources. Subsequently, a scientific monitoring study was conducted following a methodology structured in four stages: planning, research, analysis, and competitive intelligence. Additionally, a literature review was conducted to identify needs and select keywords focused on the electrocoagulation process as a wastewater treatment technology in various industries.
Results: The review revealed that wastewater treatment removal efficiency is achieved by removing one or more of its components in whole or in part, depending on the initial or inlet organic load. The main parameters evaluated were Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), color, turbidity, Total Organic Carbon (TOC), and oil and grease content. Several studies have concluded that, under optimal treatment conditions, electrocoagulation can achieve approximately 90% removal of the pollutant loads in wastewater from diverse industrial sectors.
Conclusions: The review showed that electrocoagulation technology is a highly effective alternative for treating a wide variety of industrial effluents containing pollutants that cannot be effectively removed by conventional treatment methods. In addition, more research is needed to study the impact of new organic coagulant-assisted processes, reactor designs, electrode configuration, electrocoagulation mechanisms, processing conditions and electrode dissolution phenomena, in order to obtain greater removal and improvement in the treatment process.
Financing: The project was financed through the National Fund for Science, Technology, and Innovation of the General System of Royalties (Bank of National Investment Programs and Projects), the University of Sucre and the PADES group, within the framework of the project "Technological strengthening of the Colombian Caribbean region through the development of transformation processes of starchy raw materials (cassava, yams and sweet potatoes) in the department of Sucre", identified with the BPIN code 2020000100035. 

Resumen (es)

La técnica de electrocoagulación (EC) se ha considerado una alternativa popular de tratamiento para la separación eficaz de contaminantes orgánicos e inorgánicos. Está técnica genera partículas coagulantes in situ mediante la electrolisis de un ánodo de sacrificio que desestabiliza los contaminantes suspendidos, disueltos o emulsionados en un medio líquido mediante la inducción de un campo eléctrico. La EC ha sido estudiada ampliamente debido a su versatilidad, facilidad de instalación, menor costo y por ser una tecnología amigable con el medio ambiente. Para la elaboración de este documento se realizó una fase de búsqueda y captación de información, en la cual se identificaron las herramientas de Scopus, Sciencedirect y Google Scholar como las herramientas necesarias para la búsqueda de información sobre el proceso de electrocoagulación como tecnología de tratamiento de aguas residuales en diversas industrias. En este documento, se han revisado estudios sobre los avances de la EC en varios tipos de aguas residuales en distintas industrias donde se han evaluado las variables operativas y condiciones óptimas de tratamiento que son vitales para el proceso de electrocoagulación. Asimismo, se establece el efecto del proceso de electrocoagulación sobre las propiedades de calidad de aguas residuales de las diferentes industrias, teniendo en cuenta los diversos parámetros que afectan al sistema, como densidad de corriente, el pH, la geometría del reactor, el tiempo de tratamiento y distancia entre los electrodos.
Objetivo: conocer el efecto del proceso de electrocoagulación sobre las propiedades de calidad de aguas residuales provenientes de diversas industrias en función de parámetros fisicoquímicos y geométricos. Metodología: se realizó una fase de búsqueda y captación de información, en la cual se identificaron las bases de dato Scopus, Sciencedirect y Google Scholar como las principales fuentes para la búsqueda de información. Posteriormente, se realizó una revisión bibliográfica para identificar necesidades y seleccionar palabras claves enfocadas al proceso de electrocoagulación como tecnología de tratamiento de aguas residuales en diversas industrias.
Resultados: durante la revisión, se encontró que la eficiencia de eliminación del tratamiento de aguas residuales se logra eliminando uno o más de sus componentes en su totalidad o en parte, en función de la carga orgánica inicial o, de entrada. Los principales parámetros evaluados fueron Demanda Química de Oxígeno (DQO), Demanda Bioquímica de Oxígeno (DBO), sólidos suspendidos totales (SST), color, turbidez, carbono orgánico total (COT), contenido de aceite y grasa. Lo que llevó a que varios estudios concluyeran que en condiciones óptimas de tratamiento se logra una remoción efectiva de aproximadamente el 90% de la carga contaminante de las aguas residuales en diversas industrias.
Conclusiones: la revisión demostró que la tecnología de electrocoagulación ha sido una gran alternativa aplicada con éxito para el tratamiento de una amplia variedad de efluentes industriales que contienen contaminantes, los cuales no pueden ser eliminados de manera efectiva mediante métodos de tratamiento convencionales. Se evidenció también la necesidad de abarcar más investigaciones para estudiar el impacto de los nuevos procesos asistidos con coagulantes orgánicos, diseños de reactores, configuración de los electrodos, los mecanismos de electrocoagulación, las condiciones de procesamiento y los fenómenos de disolución de los electrodos, con el propósito de obtener una mayor eliminación y mejora en el proceso de tratamiento.
Financiamiento: el proyecto fue financiado a través del Fondo Nacional de Ciencia, Tecnología e Innovación del Sistema General de Regalías (Banco de Programas y Proyectos de Inversión Nacional), la Universidad de Sucre y el grupo PADES en el marco del proyecto "Fortalecimiento tecnológico de la región Caribe colombiana a través del desarrollo de procesos de transformación de materias primas amiláceas (yuca, ñame y batata) en el departamento de Sucre", identificado con el código BPIN 2020000100035.

Biografía del autor/a

Ana Salcedo Díaz, Universidad de Sucre,undefined

Bióloga y maestrante en Ciencias Ambientales de la Universidad de Sucre. Miembro del grupo de investigación Procesos Agroindustriales y Desarrollo Sostenible (PADES).

Jairo Guadalupe Salcedo Mendoza, Universidad de Sucre

Ingeniero Químico y Doctor en Ingeniería Química de la Universidad de Sucre. Miembro del grupo de investigación Procesos Agroindustriales y Desarrollo Sostenible (PADES).

Jorge Emilio Hernández Ruydiaz, Universidad de Sucre

Ingeniero Agroindustrial y Magíster en Ciencias Agroalimentarias. Miembro del grupo de investigación Procesos Agroindustriales y Desarrollo Sostenible (PADES)

Jorge Antonio Figueroa Flórez, Universidad de Sucre

Ingeniero Agroindustrial y Doctor en Biotecnología. Miembro del grupo de investigación Procesos Agroindustriales y Desarrollo Sostenible (PADES).

Manuel Antonio Cervera Ricardo, Universidad de Sucre

Ingeniero Agroindustrial y maestrante en Innovación. Miembro del grupo de investigación Procesos Agroindustriales y Desarrollo Sostenible (PADES)

Referencias

[1] Sivaranjani et al., “Applicability and new trends of different electrode materials and their combinations in electrocoagulation process: A brief review,” Mater. Today Proc., vol. 37, no. 2, pp. 377–382, 2020, doi: https://10.1016/j.matpr.2020.05.379.

[2] Z. Guo, Y. Zhang, H. Jia, J. Guo, X. Meng, and J. Wang, "Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation", Sci. Total Environ., vol. 806, Art. no. 150529, 2022, doi: https://10.1016/j.scitotenv.2021.150529.

[3] Y. Liu, X. Zhang, W. M. Jiang, M. R. Wu, and Z. H. Li, "Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors", Chem. Eng. J., vol. 417, Art. no. 129310, 2021, doi: https://10.1016/j.cej.2021.129310.

[4] N. A. Rahman, C. J. Jol, A. A. Linus, and V. Ismail, "Emerging Application of Electrocoagulation for Tropical Peat Water Treatment: A Review", Chem. Eng. Process. - Process Intensif., vol. 165, Art. no. 108449, 2021, doi: https://10.1016/j.cep.2021.108449.

[5] Y. G. Asfaha, A. K. Tekile, and F. Zewge, "Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: A review", Clean. Eng. Technol., vol. 4, Art. no. 100261, 2021, doi: https://10.1016/j.clet.2021.100261.

[6] P. V. Nidheesh, J. Scaria, D. S. Babu, and M. S. Kumar, "An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater", Chemosphere, vol. 263, Art. no. 127907, 2021, doi: https://10.1016/j.chemosphere.2020.127907.

[7] A. Tahreen, M. S. Jami, and F. Ali, "Role of electrocoagulation in wastewater treatment: A developmental review", J. Water Process Eng., vol. 37, Art. no. 101440, 2020, doi: https://10.1016/j.jwpe.2020.101440.

[8] Y. Rodriguez, M. Fuentes, O. Beleño, and L. Montoya, “Wastewater originated in the dairy and meat processing industry,” Tecnura, vol. 25, no. 67, pp. 26–39, 2021.

[9] A. K. Verma, "Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode", J. Water Process Eng., vol. 20, pp. 168-172, 2017, doi: https://10.1016/j.jwpe.2017.11.001.

[10] J. E. C. A. Martins et al., "Delineamento Box-Behnken para remoção de DQO de efluente têxtil utilizando eletrocoagulação com corrente contínua pulsada", Eng. Sanit. E Ambient., vol. 22, no. 6, pp. 1055-1064, 2017, doi: https://10.1590/s1413-41522017150743.

[11] M. Moussavi, A. Pendashteh, and H. Alinia, "Treatment of a natural gas refinery effluents by electrocoagulation", Environ. Chall., vol. 3, Art. no. 100036, 2021, doi: https://10.1016/j.envc.2021.100036.

[12] Y. Hu, L. Zhou, J. Zhu, and J. Gao, "Efficient removal of polyamide particles from wastewater by electrocoagulation", J. Water Process Eng., vol. 51, Art. no. 103417, 2023, doi: https://10.1016/j.jwpe.2022.103417.

[13] D. T. Moussa, M. H. El-Naas, M. Nasser, and M. J. Al-Marri, "A comprehensive review of electrocoagulation for water treatment: Potentials and challenges", J. Environ. Manage., vol. 186, pp. 24-41, 2017, doi: https://10.1016/j.jenvman.2016.10.032.

[14] A. Shokri and M. S. Fard, "A critical review in electrocoagulation technology applied for oil removal in industrial wastewater", Chemosphere, vol. 288, Art. no. 132355, 2022, doi: https://10.1016/j.chemosphere.2021.132355.

[15] M. Kobya, R. D. C. Soltani, P. I. Omwene, and A. Khataee, "A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms", Environ. Technol. Innov., vol. 17, Art. no. 100519, 2020, doi: https://10.1016/j.eti.2019.100519.

[16] A. A. Al-Raad and M. M. Hanafiah, "Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms", J. Environ. Manage., vol. 300, Art. no. 113696, 2021, doi: https://10.1016/j.jenvman.2021.113696.

[17] I. D. Tegladza, Q. Xu, K. Xu, G. Lv, and J. Lu, "Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal", Process Saf. Environ. Prot., vol. 146, pp. 169-189, 2021, doi: https://10.1016/j.psep.2020.08.048.

[18] S. Akter, M. B. K. Suhan, and M. S. Islam, "Recent advances and perspective of electrocoagulation in the treatment of wastewater: A review", Environ. Nanotechnol. Monit. Manag., vol. 17, Art. no. 100643, 2022, doi: https://10.1016/j.enmm.2022.100643.

[19] S. Garcia-Segura, M. M. S. G. Eiband, J. V. de Melo, and C. A. Martínez-Huitle, "Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies", J. Electroanal. Chem., vol. 801, pp. 267-299, 2017, doi: https://10.1016/j.jelechem.2017.07.047.

[20] P. V. Nidheesh and T. S. A. Singh, "Arsenic removal by electrocoagulation process: Recent trends and removal mechanism", Chemosphere, vol. 181, pp. 418-432, 2017, doi: https://10.1016/j.chemosphere.2017.04.082.

[21] J. N. Hakizimana et al., "Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches", Desalination, vol. 404, pp. 1-21, 2017, doi: https://10.1016/j.desal.2016.10.011.

[22] C. A. Igwegbe, O. D. Onukwuli, J. O. Ighalo, and C. J. Umembamalu, "Electrocoagulation-flocculation of aquaculture effluent using hybrid iron and aluminium electrodes: A comparative study", Chem. Eng. J. Adv., vol. 6, Art. no. 100107, 2021, doi: https://10.1016/j.ceja.2021.100107.

[23] D. Ankoliya, A. Mudgal, M. K. Sinha, V. Patel, and J. Patel, "Application of electrocoagulation process for the treatment of dairy wastewater: A mini review", Mater. Today Proc., 2022, doi: https://10.1016/j.matpr.2022.10.254.

[24] K. E. Adou et al., “Coupling anaerobic digestion and electrocoagulation for slaughterhouse wastewater treatment,” Sci. Afr., vol. 16, Art. no. e01238, 2022, doi: https://10.1016/j.sciaf.2022.e01238.

[25] B. K. Nandi and S. Patel, "Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation", Arab. J. Chem., vol. 10, pp. S2961-S2968, 2017, doi: https://10.1016/j.arabjc.2013.11.032.

[26] K. Padmaja, J. Cherukuri, and M. Anji Reddy, "A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent", J. Water Process Eng., vol. 34, Art. no. 101153, 2020, doi: https://10.1016/j.jwpe.2020.101153.

[27] Rusdianasari, Y. Bow, A. Syakdani, and D. I. Mayasari, "The Effectiveness of Electrocoagulation Process in Rubber Wastewater Treatment using Combination Electrodes", IOP Conf. Ser. Earth Environ. Sci., vol. 709, no. 1, Art. no. 012009, 2021, doi: https://10.1088/1755-1315/709/1/012009.

[28] A. Dimoglo, P. Sevim-Elibol, Dinç, K. Gökmen, and H. Erdoğan, "Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse", J. Water Process Eng., vol. 31, 2019, doi: https://10.1016/j.jwpe.2019.100877.

[29] M. Moussavi, A. Pendashteh, and H. Alinia, "Treatment of a natural gas refinery effluents by electrocoagulation", Environ. Chall., vol. 3, 2021, doi: https://10.1016/j.envc.2021.100036.

[30] J. M. Andrade, E. Ramírez Plazas, and A. Quintero, "Vigilancia tecnológica del sector agroindustrial", Entornos, vol. 30, no. 2, pp. 23-35, 2017, doi: https://10.25054/01247905.1404.

[31] M. Ghazouani, H. Akrout, S. Jellali, and L. Bousselmi, "Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities", Sci. Total Environ., vol. 647, pp. 1651-1664, 2019, doi: https://10.1016/j.scitotenv.2018.08.023.

[32] P. López and A. Harnisth, "Electrocoagulación de aguas residuales de la industria láctea (Dairy industry wastewater electrocoagulation)", Enfoque UTE, vol. 7, no. 1, pp. 13-21, 2016.

[33] T. Kim, T. K. Kim, and K. D. Zoh, "Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes", J. Water Process Eng., vol. 33, 2020, doi: https://10.1016/j.jwpe.2019.101109.

[34] T. Öztürk and Ö. F. Özcan, "Effectiveness of electrocoagulation and chemical coagulation methods on paper industry wastewaters and optimum operating parameters", Sep. Sci. Technol. Phila., vol. 56, no. 12, pp. 2074-2086, 2021, doi: https://10.1080/01496395.2020.1805465.

[35] R. Baird, E. Rice, and A. Eaton, "Standard Methods for the examination of Water and Wasterwater", 23rd ed. Washington, DC, USA: APHA, 2017.

[36] G. Varank, S. Yazici Guvenc, and A. Demir, "A comparative study of electrocoagulation and electro-Fenton for food industry wastewater treatment: Multiple response optimization and cost analysis", Sep. Sci. Technol. Phila., vol. 53, no. 17, pp. 2727-2740, 2018, doi: https://10.1080/01496395.2018.1470643.

[37] S. H. Ammar, N. N. Ismail, A. D. Ali, and W. M. Abbas, "Electrocoagulation technique for refinery wastewater treatment in an internal loop split-plate airlift reactor", J. Environ. Chem. Eng., vol. 7, no. 6, Art. no. 103489, 2019, doi: https://10.1016/j.jece.2019.103489.

[38] S. Julaika, A. P. Dewi, and U. H. Cintia, "Application of Electrocoagulation Methods to Reduce BOD and COD Content in the Soft Drink Industry’s Wastewater with Addition Bittern", IOP Conf. Ser. Mater. Sci. Eng., vol. 462, no. 1, 2019, doi: https://10.1088/1757-899X/462/1/012033.

[39] J. J. João, T. Emerick, U. S. De Filho, and R. K. Nishihora, "Electrocoagulation-flotation process: Investigation of operational parameters for wastewater treatment from fishery industry", Quimica Nova, vol. 41, no. 2, pp. 163-168, 2018, doi: https://10.21577/0100-4042.20170166.

[40] O. Sahu, D. G. Rao, A. Thangavel, and S. Ponnappan, "Treatment of sugar industry wastewater using a combination of thermal and electrocoagulation processes", Int. J. Sustain. Eng., vol. 11, no. 1, pp. 16-25, 2018, doi: https://10.1080/19397038.2017.1334098.

[41] J. D. Bolaños-Alfaro, G. Cordero-Castro, and G. Segura-Araya, "Determinación de nitritos, nitratos, sulfatos y fosfatos en agua potable como indicadores de contaminación ocasionada por el hombre, en dos cantones de Alajuela (Costa Rica)", Rev. Tecnol. En Marcha, vol. 30, no. 4, p. 15, 2017, doi: https://10.18845/tm.v30i4.3408.

[42] M. Amarine, B. Lekhlif, E. M. Mliji, and J. Echaabi, "Nitrate removal from groundwater in Casablanca region (Morocco) by electrocoagulation", Groundw. Sustain. Dev., vol. 11, Art. no. 100452, 2020, doi: https://10.1016/j.gsd.2020.100452.

[43] A. Almukdad, M. A. Hafiz, A. T. Yasir, R. Alfahel, and A. H. Hawari, "Unlocking the application potential of electrocoagulation process through hybrid processes", J. Water Process Eng., vol. 40, Art. no. 101956, 2021, doi: https://10.1016/j.jwpe.2021.101956.

[44] Rajagopal, P., K. Chithra, S. Ajith, and S. V. Prasad, "Optimization of pharmaceutical wastewater treatment by electrocoagulation and dual coagulation". 525-540, 2022, doi: https://10.1111/wej.12784.

[45] A. Sofiavizhimalar et al., "Utilization of natural polysaccharide from Tamarindus indica L. seeds for the effective reduction of pollutants in cheese processed wastewater", Chemosphere, vol. 305, Art. no. 135241, 2022, doi: https://10.1016/j.chemosphere.2022.135241.

[46] T. Emerick, J. L. Vieira, M. H. L. Silveira, and J. J. Joaõ, "Ultrasound-assisted electrocoagulation process applied to the treatment and reuse of swine slaughterhouse wastewater", J. Environ. Chem. Eng., vol. 8, Art. no. 104308, 2020, doi: https://10.1016/j.jece.2020.104308.

[47] S. Gondudey, P. K. Chaudhari, S. Dharmadhikari, and R. S. Thakur, "Treatment of sugar industry effluent using an electrocoagulation process: Process optimization using the response surface methodology", J. Serbian Chem. Soc., vol. 85, no. 10, pp. 1357-1369, 2020, doi: https://10.2298/JSC200319037G.

[48] S. Veli, Özbay, B. Özbay, A. Arslan, and E. Çebi, "Optimization of process variables for treatment of food industry effluents by electrocoagulation", Glob. Nest. J., vol. 20, no. 3, pp. 551-557, 2018, doi: https://10.30955/gnj.002640.

[49] E. Aguilar, "A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais", Rev. Ambiente E Agua, vol. 9, no. 3, pp. 445-458, 2018, doi: https://10.4136/1980-993X.

[50] L. Isea, J. Vargas, J. Duran, D. Delgado, J. Troconis, and E. V. Vera, "Remoción de materia orgánica en aguas residuales de industria porcina mediante electrocoagulación", Bol. Cent. Investig. Biol., vol. 51, no. 2, pp. 80-96, 2017.

[51] L. Tirado, Ö. Gökkuş, E. Brillas, and I. Sirés, "Treatment of cheese whey wastewater by combined electrochemical processes", J. Appl. Electrochem., vol. 48, no. 12, pp. 1307-1319, 2018, doi: https://10.1007/s10800-018-1218-y.

[52] T. Emerick, J. L. Vieira, M. H. L. Silveira, and J. J. Joaõ, "Ultrasound-assisted electrocoagulation process applied to the treatment and reuse of swine slaughterhouse wastewater", J. Environ. Chem. Eng., vol. 8, no. 6, Art. no. 104308, 2020, doi: https://10.1016/j.jece.2020.104308.

[53] D. Kumar and C. Sharma, «Paper industry wastewater treatment by electrocoagulation and aspect of sludge management», J. Clean. Prod., vol. 360, Art. no. 131970, 2022, doi: https://10.1016/j.jclepro.2022.131970.

[54] C. Zampeta, M. Mastrantonaki, N. Katsaouni, Z. Frontistis, P. G. Koutsoukos, and D. V Vayenas, "Treatment of printing ink wastewater using a continuous flow electrocoagulation reactor", J. Environ. Manage., vol. 314, Art. no. 115033, 2022, doi: https://10.1016/j.jenvman.2022.115033.

[55] M. Ebadi, A. Asareh, R. J. Yengejeh, and N. Hedayat, "Investigation of electro-coagulation process for phosphate and nitrate removal from sugarcane wastewaters", Iran. J. Toxicol., vol. 15, no. 1, pp. 19-26, 2021, doi: https://10.32598/IJT.15.1.483.4.

[56] K. Hendaoui, M. Trabelsi-ayadi, and F. Ayari, "Chinese Journal of Chemical Engineering Optimization of continuous electrocoagulation-adsorption combined process for the treatment of a textile effluent", Chin. J. Chem. Eng., vol. 44, pp. 310-320, 2022, doi: https://10.1016/j.cjche.2020.10.047.

[57] S. Abbasi, M. Mirghorayshi, S. Zinadini, and A. A. Zinatizadeh, "A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: Optimization of operating factors using RSM", Process Saf. Environ. Prot., vol. 134, pp. 323-332, 2020, doi: https://10.1016/j.psep.2019.12.005.

[58] A. D. Villalobos-Lara et al., "Electrocoagulation treatment of industrial tannery wastewater employing a modified rotating cylinder electrode reactor", Chemosphere, vol. 264, p. 128491, 2021, doi: https://10.1016/j.chemosphere.2020.128491.

[59] A. G. Khorram and N. Fallah, "Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: Optimization of operating parameters by RSM", J. Environ. Chem. Eng., vol. 6, no. 1, pp. 635-642, 2018, doi: https://10.1016/j.jece.2017.12.054.

Cómo citar

APA

Salcedo Díaz, A., Salcedo Mendoza, J. G., Hernández Ruydiaz, J. E., Figueroa Flórez, J. A., y Cervera Ricardo, M. A. (2025). Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review. Tecnura, 29(86). https://doi.org/10.14483/22487638.21867

ACM

[1]
Salcedo Díaz, A. et al. 2025. Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review. Tecnura. 29, 86 (dic. 2025). DOI:https://doi.org/10.14483/22487638.21867.

ACS

(1)
Salcedo Díaz, A.; Salcedo Mendoza, J. G.; Hernández Ruydiaz, J. E.; Figueroa Flórez, J. A.; Cervera Ricardo, M. A. Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review. Tecnura 2025, 29.

ABNT

SALCEDO DÍAZ, Ana; SALCEDO MENDOZA, Jairo Guadalupe; HERNÁNDEZ RUYDIAZ, Jorge Emilio; FIGUEROA FLÓREZ, Jorge Antonio; CERVERA RICARDO, Manuel Antonio. Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review. Tecnura, [S. l.], v. 29, n. 86, 2025. DOI: 10.14483/22487638.21867. Disponível em: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/21867. Acesso em: 11 feb. 2026.

Chicago

Salcedo Díaz, Ana, Jairo Guadalupe Salcedo Mendoza, Jorge Emilio Hernández Ruydiaz, Jorge Antonio Figueroa Flórez, y Manuel Antonio Cervera Ricardo. 2025. «Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review». Tecnura 29 (86). https://doi.org/10.14483/22487638.21867.

Harvard

Salcedo Díaz, A. (2025) «Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review», Tecnura, 29(86). doi: 10.14483/22487638.21867.

IEEE

[1]
A. Salcedo Díaz, J. G. Salcedo Mendoza, J. E. Hernández Ruydiaz, J. A. Figueroa Flórez, y M. A. Cervera Ricardo, «Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review», Tecnura, vol. 29, n.º 86, dic. 2025.

MLA

Salcedo Díaz, Ana, et al. «Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review». Tecnura, vol. 29, n.º 86, diciembre de 2025, doi:10.14483/22487638.21867.

Turabian

Salcedo Díaz, Ana, Jairo Guadalupe Salcedo Mendoza, Jorge Emilio Hernández Ruydiaz, Jorge Antonio Figueroa Flórez, y Manuel Antonio Cervera Ricardo. «Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review». Tecnura 29, no. 86 (diciembre 31, 2025). Accedido febrero 11, 2026. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/21867.

Vancouver

1.
Salcedo Díaz A, Salcedo Mendoza JG, Hernández Ruydiaz JE, Figueroa Flórez JA, Cervera Ricardo MA. Electrocoagulation as an Emerging Technology for Wastewater Treatment in Different Industries: A Review. Tecnura [Internet]. 31 de diciembre de 2025 [citado 11 de febrero de 2026];29(86). Disponible en: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/21867

Descargar cita

Visitas

0

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.
Loading...