DOI:
https://doi.org/10.14483/2256201X.23266Published:
2026-01-01Issue:
Vol. 29 No. 1 (2026): January-JuneSection:
Review articlesSequías e incendios forestales en América Latina: una revisión sistemática de literatura
Droughts and Forest Fires in Latin America: A Systematic Literature Review
Keywords:
cambio climático, evaluación de incendios, evaluación de sequías, monitoreo satelital (es).Keywords:
Climate change, fire assessment, drought assessment, satellite monitoring (en).Downloads
Abstract (es)
Esta revisión sistemática abarca la literatura publicada entre 2012 y 2023 en las bases de datos SciELO y Scopus sobre las relaciones entre sequías e incendios forestales en América Latina, destacando la manera en que las sequías extremas incrementan la frecuencia y la intensidad de los incendios. Se identificaron diversas fuentes de datos que son clave para evaluar estos fenómenos. El Instituto Nacional de Pesquisas Espaciais (INPE) fue la fuente más citada, donde el 37 % de los estudios utilizó datos del Programa Queimadas. Para la evaluación de sequías, el 27 % empleó la misión Tropical Rainfall Measuring Mission (TRMM) de la NASA, y el 23 % utilizó datos del Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). Los enfoques estadísticos, como las correlaciones, las regresiones y los modelos predictivos, evidencian la complejidad de estas interacciones. Finalmente, se resalta la necesidad de mejorar la disponibilidad y accesibilidad de datos para una mejor gestión de sequías e incendios en el contexto del cambio climático.
Abstract (en)
This systematic review covers the literature published between 2012 and 2023 from the SciELO and Scopus databases on the relationships between droughts and wildfires in Latin America, highlighting how extreme droughts increase the frequency and intensity of fires. Multiple data sources were identified as key to assessing these phenomena. Instituto Nacional de Pesquisas Espaciais (INPE) was the most frequently cited source, with 37% of the studies using data from the Queimadas Program. For drought assessment, 27% employed NASA’s Tropical Rainfall Measuring Mission (TRMM), while 23% used data from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS). Statistical approaches, such as correlations, regressions, and predictive models, reveal the complexity of these interactions. Finally, the review emphasizes the need to improve data availability and accessibility for better drought and fire management in the context of climate change.
References
Afghah, F., Razi, A., Chakareski, J., & Ashdown, J. (2019). Wildfire monitoring in remote areas using autonomous unmanned aerial vehicles [Artículo de conferencia]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). https://doi.org/10.1109/INFCOMW.2019.8845309
Alizadeh, M. R., Adamowski, J., & Entekhabi, D. (2024). Land and atmosphere precursors to fuel loading, wildfire ignition and post‐fire recovery. Geophysical Research Letters, 51(2), e2023GL105324. https://doi.org/10.1029/2023GL105324
Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V. J., Silva Junior, C. H. L., Arai, E., Aguiar, A. P., Barlow, J., Berenguer, E., Deeter, M. N., Domingues, L. G., Gatti, L., Gloor, M., Malhi, Y., Marengo, J. A., Miller, J. B., ... Saatchi, S. (2018). 21st-century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 9(1), 536. https://doi.org/10.1038/s41467-017-02771-y
Armenteras, D., Retana-Alumbreros, J., Molowny-Horas, R., Román-Cuesta, R. M., González-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279-289. https://doi.org/10.1016/j.agrformet.2010.11.002
Armenteras, D., & Retana, J. (2012). Dynamics, patterns and causes of fires in northwestern Amazonia. PloS One, 7(4), e35288. https://doi.org/10.1371/journal.pone.0035288
Barros-Rosa, L., de Arruda, P. H. Z., Machado, N. G., Pires-Oliveira, J. C., & Eisenlohr, P. V. (2022). Fire probability mapping and prediction from environmental data: What a comprehensive savanna-forest transition can tell us. Forest Ecology and Management, 520, 120354. https://doi.org/10.1016/j.foreco.2022.120354
Bedia, J., Herrera, S., Gutiérrez, J. M., Benali, A., Brands, S., Mota, B., & Moreno, J. M. (2015). Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology, 214-215, 369-379. https://doi.org/10.1016/j.agrformet.2015.09.002
Bowman, D. M. J. S., O’Brien, J. A., & Goldammer, J. G. (2013). Pyrogeography and the global quest for sustainable fire management. Annual Review of Environment and Resources, 38(1), 57-80. https://doi.org/10.1146/annurev-environ-082212-134049
Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences, 111(17), 6347-6352. https://doi.org/10.1073/pnas.1305499111
Carvalho, N. S., Anderson, L. O., Nunes, C. A., Pessôa, A. C. M., Junior, C. H. L. S., Reis, J. B. C., Shimabukuro, Y. E., Berenguer, E., Barlow, J., & Aragão, L. E. O. C. (2021). Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environmental Research Letters, 16(12), 125009. https://doi.org/10.1088/1748-9326/ac3aa3
Carvalho, T. C., Wittmann, F., Piedade, M. T. F., Resende, A. F. D., Silva, T. S. F., & Schöngart, J. (2021). Fires in Amazonian blackwater floodplain forests: Causes, human dimension, and implications for conservation. Frontiers in Forests and Global Change, 4, 755441. https://doi.org/10.3389/ffgc.2021.755441
Cavalcante, R. B. L., Souza, B. M., Ramos, S. J., Gastauer, M., Nascimento Junior, W. R., Caldeira, C. F., & Souza-Filho, P. W. M. (2021). Assessment of fire hazard weather indices in the eastern Amazon: A case study for different land uses. Acta Amazonica, 51, 352-362. https://doi.org/10.1590/1809-4392202101172
Cerano-Paredes, J., Villanueva-Díaz, J., Vázquez-Selem, L., Cervantes-Martínez, R., Esquivel-Arriaga, G., Cruz, V. G. la, & Fulé, P. Z. (2016). Historical fire regime and its relationship with climate in a forest of Pinus hartwegii to the north of Puebla State, Mexico. Revista Bosque, 37(2), 2. https://revistabosque.org/index.php/bosque/article/view/477
Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., & Turco, M. (2021). Human and climate drivers of global biomass burning variability. Science of The Total Environment, 779, 146361. https://doi.org/10.1016/j.scitotenv.2021.146361
Cohen, J. D., & Deeming, J. E. (1985). The national fire-danger rating system: Basic equations. US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. https://doi.org/10.2737/PSW-GTR-82
de Faria, B. L., Brando, P. M., Macedo, M. N., Panday, P. K., Soares-Filho, B. S., & Coe, M. T. (2017). Current and future patterns of fire-induced forest degradation in Amazonia. Environmental Research Letters, 12(9), 095005. https://doi.org/10.1088/1748-9326/aa69ce
de Magalhães Neto, N., & Evangelista, H. (2022). Human Activity Behind the Unprecedented 2020 Wildfire in Brazilian Wetlands (Pantanal). Frontiers in Environmental Science, 10, 1-15. https://doi.org/10.3389/fenvs.2022.888578
dos Reis, M., Graça, P. M. L. D. A., Yanai, A. M., Ramos, C. J. P., & Fearnside, P. M. (2021). Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. Journal of Environmental Management, 288, 112310. https://doi.org/10.1016/j.jenvman.2021.112310
Fernandes, P. M., Loureiro, C., Guiomar, N., Pezzatti, G. B., Manso, F. T., & Lopes, L. (2014). The dynamics and drivers of fuel and fire in the Portuguese public forest. Journal of Environmental Management, 146, 373-382. https://doi.org/10.1016/j.jenvman.2014.07.049
Ferreira, I. J. M., Campanharo, W. A., Barbosa, M. L. F., Silva, S. S. D., Selaya, G., Aragão, L. E. O. C., & Anderson, L. O. (2023). Assessment of fire hazard in Southwestern Amazon. Frontiers in Forests and Global Change, 6, 1107417. https://doi.org/10.3389/ffgc.2023.1107417
Flores, B. M., Fagoaga, R., Nelson, B. W., & Holmgren, M. (2016). Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. Journal of Applied Ecology, 53(5), 1597-1603. https://doi.org/10.1111/1365-2664.12687
Ganteaume, A., & Syphard, A. D. (2018). Ignition Sources. En S. L. Manzello (Ed.), Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (pp. 1-17). Springer International Publishing. https://doi.org/10.1007/978-3-319-51727-8_43-1
Gonçalves, K. D. S., Castro, H. A. D., & Hacon, S. D. S. (2012). As queimadas na região amazônica e o adoecimento respiratório. Ciência & Saúde Coletiva, 17(6), 1523-1532. https://doi.org/10.1590/S1413-81232012000600016
González-Alonso, L., Val Martin, M., & Kahn, R. A. (2019). Biomass-burning smoke heights over the Amazon observed from space. Atmospheric Chemistry and Physics, 19(3), 1685-1702. https://doi.org/10.5194/acp-19-1685-2019
González-Tagle, M. A., Cerano-Paredes, J., Himmelsbach, W., Alanís-Rodríguez, E., & Colazo-Ayala, Á. A. (2023). Historial de incendios basado en técnicas dendrocronológicas para un bosque de coníferas en la región sureste de Jalisco, México. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 29(1), 35-49. https://doi.org/10.5154/r.rchscfa.2022.03.018
Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX [Artículo de conferencia]. 7th Python in Science Conference (SciPy2008). https://doi.org/10.25080/TCWV9851
Herawati, H., González-Olabarria, J. R., Wijaya, A., Martius, C., Purnomo, H., & Andriani, R. (2015, julio 7). Tools for assessing the impacts of climate variability and change on wildfire regimes in forests. CIFOR-ICRAF. https://doi.org/10.3390/f6051476
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55
Jordahl, K. (2014, julio 6). GeoPandas: Python tools for geographic data. SciPy Proceedings. https://doi.org/10.25080/Majora-14bd3278-00a
Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., Hänel, S., Haustein, K., Johannessen, M. R., Kollet, S., Müller, M. M., Pietikäinen, J.-P., Pietras-Couffignal, K., Pinto, J. G., Rechid, D., Rousi, E., Russo, A., Suárez-Gutiérrez, L., Veit, S., … Gliksman, D. (2025). Impacts on and damage to European forests from the 2018–2022 heat and drought events. Natural Hazards and Earth System Sciences, 25(1), 77-117. https://doi.org/10.5194/nhess-25-77-2025
Krueger, E. S., Levi, M. R., Achieng, K. O., Bolten, J. D., Carlson, J. D., Coops, N. C., Holden, Z. A., Magi, B. I., Rigden, A. J., & Ochsner, T. E. (2022). Using soil moisture information to better understand and predict wildfire danger: A review of recent developments and outstanding questions. International Journal of Wildland Fire, 32(2), 111-132. https://doi.org/10.1071/WF22056
Lemos, N. S. A., & Cunha, J. M. (2021). Analysis of fire risk in the Amazon: A systematic review. Revista Ambiente & Água, 16, e2706. https://doi.org/10.4136/ambi-agua.2706
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22(7), 2353-2369. https://doi.org/10.1111/gcb.13275
Loudermilk, E. L., O’Brien, J. J., Goodrick, S. L., Linn, R. R., Skowronski, N. S., & Hiers, J. K. (2022). Vegetation’s influence on fire behavior goes beyond just being fuel. Fire Ecology, 18(1), 9. https://doi.org/10.1186/s42408-022-00132-9
Maillard, O., Vides-Almonacid, R., Flores-Valencia, M., Coronado, R., Vogt, P., Vicente-Serrano, S. M., Azurduy, H., Anívarro, R., & Cuéllar, R. L. (2020). Relationship of forest cover fragmentation and drought with the occurrence of forest fires in the department of Santa Cruz, Bolivia. Forests, 11(9), 910. https://doi.org/10.3390/f11090910
Marengo, J. A., Cunha, A. P., Cuartas, L. A., Deusdará Leal, K. R., Broedel, E., Seluchi, M. E., Michelin, C. M., De Praga Baião, C. F., Chuchón Angulo, E., Almeida, E. K., Kazmierczak, M. L., Mateus, N. P. A., Silva, R. C., & Bender, F. (2021). Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes, and impacts. Frontiers in Water, 3, 1-20. https://doi.org/10.3389/frwa.2021.639204
McKinney, W. (2010, junio 28). Data structures for statistical computing in Python. SciPy Proceedings. https://doi.org/10.25080/Majora-92bf1922-00a
Microsoft Corporation (2024). Microsoft Excel (Versión 2501, compilación 18429.20158) [Software de computadora]. https://www.microsoft.com/es-co/microsoft-365/excel
Morgan, W. T., Darbyshire, E., Spracklen, D. V., Artaxo, P., & Coe, H. (2019). Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Scientific Reports, 9(1), 16975. https://doi.org/10.1038/s41598-019-53112-6
Nogueira, J. M. P., Rambal, S., Barbosa, J. P. R. A. D., & Mouillot, F. (2017). Spatial pattern of the seasonal drought/burned area relationship across Brazilian biomes: Sensitivity to drought metrics and global remote-sensing fire products. Climate, 5(2), 2. https://doi.org/10.3390/cli5020042
Nolan, R. H., Boer, M. M., Collins, L., Resco de Dios, V., Clarke, H., Jenkins, M., Kenny, B., & Bradstock, R. A. (2020). Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Global Change Biology, 26(3), 1039-1041. https://doi.org/10.1111/gcb.14987
Oliveira, J. G. D., Massi, K. G., Bortolozo, L. A. P., & Cunha, A. P. M. D. A. (2023). The influence of climate parameters on fires in the Paraíba do Sul River valley, southeast Brazil. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 18, 1-14. https://doi.org/10.4136/ambi-agua.2923
Oliveira, U., Soares-Filho, B., Bustamante, M., Gomes, L., Ometto, J. P., & Rajão, R. (2022). Determinants of fire impact in the Brazilian biomes. Frontiers in Forests and Global Change, 5, 735017. https://doi.org/10.3389/ffgc.2022.735017
Oliveira Júnior, J. F., Sousa, G. de, Nunes, M., Fernandes, M., & Tomzhinski, G. (2017). Relação entre o standardized precipitation index (SPI) e os relatórios de ocorrência de incêndios (ROI) no Parque Nacional do Itatiaia. Floresta e Ambiente, 24, e20160031. https://doi.org/10.1590/2179-8087.003116
Oliveira-Júnior, J. F. D., Mendes, D., Correia Filho, W. L. F., Silva Junior, C. A. D., Gois, G. D., Jardim, A. M. D. R. F., Silva, M. V. D., Lyra, G. B., Teodoro, P. E., Pimentel, L. C. G., Lima, M., Santiago, D. D. B., Rogério, J. P., & Marinho, A. A. R. (2021). Fire foci in South America: Impact and causes, fire hazard and future scenarios. Journal of South American Earth Sciences, 112, 103623. https://doi.org/10.1016/j.jsames.2021.103623
OpenAI (2023). ChatGPT (modelo GPT-4) [Modelo de lenguaje de gran escala]. https://chat.openai.com/
Pompa-García, M., Julio, C. J., Dante Arturo, R.-T., & Daniel Jose, V.-N. (2018). Drought and spatiotemporal variability of forest fires across Mexico. Chinese Geographical Science, 28(1), 25-37. https://doi.org/10.1007/s11769-017-0928-0
Python Software Foundation (2024). Python (versión 3.12.2) [Lenguaje de programación]. https://www.python.org/
Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A., Dessai, S., Islam, A. S., Rahimi, M., Ruiz Carrascal, D., Sillmann, J., Sylla, M. B., Tebaldi, C., Wang, W., & Zaaboul, R. (2021).. Climate change information for regional impact and for risk assessment. En IPCC (Eds.), Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1767-1926). Cambridge University Press. https://doi.org/10.1017/9781009157896.014
Riley, K. L., Abatzoglou, J. T., Grenfell, I. C., Klene, A. E., & Heinsch, F. A. (2013). The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: The role of temporal scale. International Journal of Wildland Fire, 22, 894-909. https://doi.org/10.1071/WF12149
Román-Cuesta, R. M., Rejalaga-Noguera, L., Pinto-García, C., & Retana, J. (2014). Pacific and Atlantic oceanic anomalies and their interaction with rainfall and fire in Bolivian biomes for the period 1992–2012. Climatic Change, 127(2), 243-256. https://doi.org/10.1007/s10584-014-1246-5
Silva Junior, C. H. L., Anderson, L. O., Silva, A. L., Almeida, C. T., Dalagnol, R., Pletsch, M. A. J. S., Penha, T. V., Paloschi, R. A., & Aragão, L. E. O. C. (2019). Fire responses to the 2010 and 2015/2016 Amazonian droughts. Frontiers in Earth Science, 7, 97. https://doi.org/10.3389/feart.2019.00097
Silva Junior, C. A. da, Lima, M., Teodoro, P. E., Oliveira-Júnior, J. F. de, Rossi, F. S., Funatsu, B. M., Butturi, W., Lourençoni, T., Kraeski, A., Pelissari, T. D., Moratelli, F. A., Arvor, D., Luz, I. M. dos S., Teodoro, L. P. R., Dubreuil, V., & Teixeira, V. M. (2022). Fires drive long-term environmental degradation in the Amazon Basin. Remote Sensing, 14(2), 338. https://doi.org/10.3390/rs14020338
Silveira, M. V. F., Silva-Junior, C. H. L., Anderson, L. O., & Aragão, L. E. O. C. (2022). Amazon fires in the 21st century: The year of 2020 in evidence. Global Ecology and Biogeography, 31(10), 2026-2040. https://doi.org/10.1111/geb.13577
Silvério, D. V., Oliveira, R. S., Flores, B. M., Brando, P. M., Almada, H. K., Furtado, M. T., Moreira, F. G., Heckenberger, M., Ono, K. Y., & Macedo, M. N. (2022). Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environmental Research Letters, 17(4), 045012. https://doi.org/10.1088/1748-9326/ac5713
Souza Vilanova, R., Delgado, R. C., Frossard de Andrade, C., Lopes dos Santos, G., Magistrali, I. C., Moreira de Oliveira, C. M., Teodoro, P. E., Capristo Silva, G. F., Silva Junior, C. A. D., & de Ávila Rodrigues, R. (2021). Vegetation degradation in ENSO events: Drought assessment, soil use and vegetation evapotranspiration in the Western Brazilian Amazon. Remote Sensing Applications: Society and Environment, 23, 100531. https://doi.org/10.1016/j.rsase.2021.100531
Ten Hoeve, J. E., Remer, L. A., Correia, A. L., & Jacobson, M. Z. (2012). Recent shift from forest to savanna burning in the Amazon Basin observed by satellite. Environmental Research Letters, 7(2), 024020. https://doi.org/10.1088/1748-9326/7/2/024020
Urrutia-Jalabert, R., González, M. E., González-Reyes, Á., Lara, A., & Garreaud, R. (2018). Climate variability and forest fires in central and south-central Chile. Ecosphere, 9(4), e02171. https://doi.org/10.1002/ecs2.2171
Xu, R., Yu, P., Abramson, M. J., Johnston, F. H., Samet, J. M., Bell, M. L., Haines, A., Ebi, K. L., Li, S., & Guo, Y. (2020). Wildfires, global climate change, and human health. New England Journal of Medicine, 383(22), 2173-2181. https://doi.org/10.1056/NEJMsr2028985
Yang, S., Huang, Q., & Yu, M. (2024). Advancements in remote sensing for active fire detection: A review of datasets and methods. Science of the Total Environment, 943, 173273. https://doi.org/10.1016/j.scitotenv.2024.173273
Ynouye-Francés, M., Ramos-Rodríguez, M. P., Martínez-Becerra, L. W., Cabrera-Reina, J. M., González-Rodríguez, R., Duany-Dangel, A., Ynouye-Francés, M., Ramos-Rodríguez, M. P., Martínez-Becerra, L. W., Cabrera-Reina, J. M., González-Rodríguez, R., & Duany-Dangel, A. (2021). Causalidad de los incendios forestales en Pinar del Río, Cuba (1975-2018). Colombia Forestal, 24(2), 24-38. https://doi.org/10.14483/2256201x.16881
Zuo, F., Yao, Q., Shi, L., Wang, Z., Bai, M., Fang, K., Guo, F., Yuan, L., & Zhang, W. (2024). Research on wildfire and soil water: A bibliometric analysis from 1990 to 2023. Fire, 7(12), 434. https://doi.org/10.3390/fire7120434
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Colombia Forestal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Colombia Forestal retains the patrimonial rights (copyright) of the published works, and favors and allows the reuse of the same under the Creative Commons Attribution-ShareAlike 4.0 International license, so they can be copied, used, disseminated, transmitted and exhibited publicly, provided that:
You acknowledge the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they endorse your use of their work).




