Published:

2021-06-25

Review of flocking organization strategies for robot swarms

Revisión de las estrategias de organización en bandadas para enjambres de robots

Authors

  • Fredy H. Martínez S. Universidad Distrital Francisco José de Caldas

Keywords:

Emergence, flocking, multi-agent systems, path planning, swarm systems (en).

Keywords:

Bandada, emergencia, planificación de trayectorias, sistemas de enjambre, sistemas multiagentes (es).

Downloads

Abstract (en)

Robotics promises great benefits for human beings, both at the industrial level and concerning personal services. This has led to the continuous development and research in different problems, including control, manipulation, human-machine interaction, and of course, autonomous navigation. Robot swarm systems promise an alternative solution to the classic high-performance platforms, particularly in applications that require task distribution. Among these systems, flocking navigation schemes are currently attracting high attention. To establish a frame of reference, a general review of the literature to date related to flocking behavior, in particular, optimized schemes with some guarantee of safety, is presented. In most of the cases presented, the characteristics of these systems, such as minimal computational and communication requirements, and event-driven planning, are maintained.

Abstract (es)

La robótica promete grandes beneficios, tanto a nivel industrial como con respecto a servicios personales. Esto ha incidido en el continuo desarrollo e investigación en diferentes problemas, entre ellos el control, la manipulación, la interacción hombre-máquina, y por supuesto, la navegación autónoma. Los sistemas de enjambres de robots prometen una alternativa de solución frente a las clásicas plataformas de alto de desempeño, particularmente en aplicaciones que requieren distribución de tareas. Entre estos sistemas, llama la atención los esquemas de navegación en bandada, los cuales tiene actualmente una alta atención. Para establecer un marco de referencia, se presenta una revisión general de la literatura a la fecha relacionada con comportamientos en bandada, en particular esquemas optimizados y con alguna garantía de seguridad. En la mayoría de los casos presentados se mantienen las características de estos sistemas, como son requisitos mínimos de computación y comunicación, y la planificación basada en eventos.

References

Alam, T., Reis, G. M., Bobadilla, L., & Smith, R. N. A data-driven deployment approach for persistent monitoring in aquatic environments. In: 2018 second IEEE international conference on robotic computing (IRC). 2018, 1–6. https://doi.org/10.1109/IRC.2018.00030.

Barve, A., & Nene, M. (2013). Survey of flocking algorithms in multi-agent systems. IJCSI International Journal of Computer Science Issues, 10(6), 110–117.

Bayındır, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172, 292–321. https://doi.org/10.1016/j.neucom.2015.05.116

Beaumont, F., Taïar, R., & Polidori, G. (2017). Preliminary numerical investigation in open currents-water swimming: Pressure field in the swimmer wake. Applied Mathematics and Computation, 302(1), 48–57. https://doi.org/10.1016/j.amc.2016.12.031

Beaver, L., Chalaki, B., Mahbub, A., Zhao, L., Zayas, R., & Malikopoulos, A. (2020). Demonstration of a time-efficient mobility system using a scaled smart city. Vehicle System Dynamics, 58(5), 787–804. https://doi.org/10.1080/00423114.2020.1730412

Beaver, L., & Malikopoulos, A. (2021). An overview on optimal flocking. Annual Reviews in Control, 51, 88–99. https://doi.org/10.1016/j.arcontrol.2021.03.004

Bedruz, R. A. R., Maningo, J. M. Z., Fernando, A. H., Bandala, A. A., Vicerra, R. R. P., & Dadios, E. P. Dynamic peloton formation configuration algorithm of swarm robots for aerodynamic effects optimization. In: 2019 7th international conference on robot intelligence technology and applications (RiTA). 2019, 264–267. https://doi.org/10.1109/RITAPP.2019.8932871.

Bobadilla, L., Martinez, F., Gobst, E., Gossman, K., & LaValle, S. Controlling wild mobile robots using virtual gates and discrete transitions. In: 2012 american control conference (ACC). IEEE, 2012, 1–8. https://doi.org/10.1109/ACC.2012.6315569.

Camperi, M., Cavagna, A., Giardina, I., Parisi, G., & Silvestri, E. (2012). Spatially balanced topological interaction grants optimal cohesion in flocking models. Interface Focus, 2(6), 715–725. https://doi.org/10.1098/rsfs.2012.0026

Celikkanat, H. Optimization of felf-organized flocking of a robot swarm via evolutionary strategies. In: 2008 23rd international symposium on computer and information sciences. 2008, 1–6. https://doi.org/10.1109/ISCIS.2008.4717880.

Dave, A., & Malikopoulos, A. A. (2019). Decentralized stochastic control in partially nested information structures. IFAC-PapersOnLine, 52(20), 97–102. https://doi.org/10.1016/j.ifacol.2019.12.134

Dave, A., & Malikopoulos, A. A. Structural results for decentralized stochastic control with a word-of-mouth communication. In: 2020 american control conference (ACC). 2020, 1–6. https://doi.org/10.23919/ACC45564.2020.9148046.

Egerstedt, M., Pauli, J. N., Notomista, G., & Hutchinson, S. (2018). Robot ecology: Constraint-based control design for long duration autonomy. Annual Reviews in Control, 46, 1–7. https://doi.org/10.1016/j.arcontrol.2018.09.006

Fine, B., & Shell, D. (2013). Unifying microscopic flocking motion models for virtual, robotic, and biological flock members. Autonomous Robots, 35(2-3), 195–219. https://doi.org/10.1007/s10514-013-9338-z

Gatt, M. C., Quetting, M., Cheng, Y., & Wikelski, M. (2020). Dynamic body acceleration increases by 20% during flight ontogeny of greylag geese anser anser. Journal of Avian Biology, 51(2), e02235. https://doi.org/10.1111/jav.02235

Genter, K. (2017). Fly with me : Algorithms and methods for influencing a flock (Doctoral dissertation). The University of Texas at Austin.

Hayes, A., & Dormiani-Tabatabaei, P. Self-organized flocking with agent failure: Off-line optimization and demonstration with real robots. In: Proceedings 2002 IEEE international conference on robotics and automation (cat. no.02ch37292). 2002, 1–6. https://doi.org/10.1109/ROBOT.2002.1014331.

Ibuki, T., Wilson, S., Yamauchi, J., Fujita, M., & Egerstedt, M. (2020). Optimization-based distributed flocking control for multiple rigid bodies. IEEE Robotics and Automation Letters, 5(2), 1891–1898. https://doi.org/10.1109/LRA.2020.2969950

Jafari, M., Xu, H., & Carrillo, L. R. G. (2020). A biologically-inspired reinforcement learning based intelligent distributed flocking control for multi-agent systems in presence of uncertain system and dynamic environment. IFAC Journal of Systems and Control, 13, 100096. https://doi.org/10.1016/j.ifacsc.2020.100096

Kölzsch, A., Flack, A., Müskens, G. J. D. M., Kruckenberg, H., Glazov, P., & Wikelski, M. (2020). Goose parents lead migration v. Journal of Avian Biology, 51(3), e02392. https://doi.org/10.1111/jav.02392

La, H. M., Lim, R., & Sheng, W. (2015). Multirobot cooperative learning for predator avoidance. IEEE Transactions on Control Systems Technology, 23(1), 52–63. https://doi.org/10.1109/TCST.2014.2312392

La, H. M., Nguyen, T. H., Nguyen, C. H., & Nguyen, H. N. Optimal flocking control for a mobile sensor network based a moving target tracking. In: 2009 IEEE international conference on systems, man and cybernetics. 2009, 1–6. https://doi.org/10.1109/ICSMC.2009.5346069.

Makiguchi, M., & Inoue, J. Anisotropy measurement in artificial flockings: How does one design the optimal boids by evolutionary computation? In: 1st international conference on soft computing and intelligent systems and 11th international symposium on advanced intelligent systems. 2010, 1–6.

Martínez, F., & Delgado, J. (2012). Wireless visual sensor network robots - based for the emulation of collective behavior. Tecnura, 16(31), 10–18.

Martínez, F., Jacinto, E., & Acero, D. Brownian motion as exploration strategy for autonomous swarm robots. In: 2012 IEEE international conference on robotics and biomimetics (ROBIO). 2012, 2375–2380. https://doi.org/10.1109/ROBIO.2012.6491325.

Martínez, F., Rendón, A., & Arbulú, M. (2018). An algorithm based on the bacterial swarm and its application in autonomous navigation problems. Lecture notes in computer science (pp. 304–313). Springer International Publishing. https://doi.org/10.1007/978-3-319-93815-8_30

Mirzaeinia, A., Hassanalian, M., Lee, K., & Mirzaeinia, M. (2019). Energy conservation of v-shaped swarming fixed-wing drones through position reconfiguration. Aerospace Science and Technology, 94(1), 105398. https://doi.org/10.1016/j.ast.2019.105398

Morgan, D., Subramanian, G. P., Chung, S.-J., & Hadaegh, F. Y. (2016). Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming. The International Journal of Robotics Research, 35(10), 1261–1285. https://doi.org/10.1177/0278364916632065

Morihiro, K., Isokawa, T., Nishimura, H., & Matsui, N. Characteristics of flocking behavior model by reinforcement learning scheme. In: 2006 SICE-ICASE international joint conference. 2006, 1–6. https://doi.org/10.1109/SICE.2006.315087.

Morihiro, K., Isokawa, T., Nishimura, H., & Matsui, N. Emergence of flocking behavior based on reinforcement learning. In: Lecture notes in computer science. 2006, 699–706. https://doi.org/10.1007/11893011_89.

Nathan, A., & Barbosa, V. C. (2008). V-like formations in flocks of artificial birds. Artificial Life, 14(2), 179–188. https://doi.org/10.1162/artl.2008.14.2.179

Navarro, I., Mario, E. D., & Martino, A. Distributed vs. centralized particle swarm optimization for learning flocking behaviors. In: European conference on artificial life 2015. 2015, 1–6. https://doi.org/10.7551/978-0-262-33027-5-ch056.

Nayyar, A., Mahajan, A., & Teneketzis, D. (2013). Decentralized stochastic control with partial history sharing: A common information approach. IEEE Transactions on Automatic Control, 58(7), 1644–1658. https://doi.org/10.1109/TAC.2013.2239000

Oh, H., Shirazi, A., Sun, C., & Jin, Y. (2017). Bio-inspired self-organising multi-robot pattern formation: A review. Robotics and Autonomous Systems, 91, 83–100. https://doi.org/10.1016/j.robot.2016.12.006

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420. https://doi.org/10.1109/TAC.2005.864190

Ouvrard, T., Groslambert, A., Ravier, G., Grosprêtre, S., Gimenez, P., & Grappe, F. (2018). Mechanisms of performance improvements due to a leading teammate during uphill cycling. International Journal of Sports Physiology and Performance, 13(9), 1215–1222. https://doi.org/10.1123/ijspp.2017-0878

Qiu, H., & Duan, H. (2020). A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Information Sciences, 509, 515–529. https://doi.org/10.1016/j.ins.2018.06.061

Reynolds, C. (1987). Flocks, herds and schools: A distributed behavioral model. Computer Graphics, 24(1), 25–34.

Sankey, D., & Portugal, S. (2019). When flocking is costly: Reduced cluster-flock density over long-duration flight in pigeons. The Science of Nature, 106(7-8), 1–5. https://doi.org/10.1007/s00114-019-1641-x

Semnani, S., & Basir, O. (2017). Multi-target engagement in complex mobile surveillance sensor networks. Unmanned Systems, 05(01), 31–43. https://doi.org/10.1142/S2301385017500030

Song, Z., Lipinski, D., & Mohseni, K. (2017). Multi-vehicle cooperation and nearly fuel-optimal flock guidance in strong background flows. Ocean Engineering, 141(1), 388–404. https://doi.org/10.1016/j.oceaneng.2017.06.024

Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A. E., & Vicsek, T. (2018). Optimized flocking of autonomous drones in confined environments. Science Robotics, 3(20), 1–6. https://doi.org/10.1126/scirobotics.aat3536

Vatankhah, R., Etemadi, S., Honarvar, M., Alasty, A., Boroushaki, M., & Vossoughi, G. Online velocity optimization of robotic swarm flocking using particle swarm optimization (PSO) method. In: 2009 6th international symposium on mechatronics and its applications. 2009, 1–6. https://doi.org/10.1109/ISMA.2009.5164776.

Veitch, C., Render, D., & Aravind, A. Ergodic flocking. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). 2019, 1–6. https://doi.org/10.1109/IROS40897.2019.8968265.

Wang, C., Wang, J., & Zhang, X. A Deep Reinforcement Learning Approach To Flocking And Navigation Of Uavs In Large-Scale Complex Environments. In: 2018 IEEE global conference on signal and information processing (GlobalSIP). 2018, 1–6. https://doi.org/10.1109/GlobalSIP.2018.8646428.

Wang, W., Zheng, Y., Lin, G., Zhang, L., & Han, Z. (2020). Swarm robotics: A review. Jiqiren/Robot, 42(2), 232–256. https://doi.org/10.13973/j.cnki.robot.190009

Wilson, S., Glotfelter, P., Wang, L., Mayya, S., Notomista, G., Mote, M., & Egerstedt, M. (2020). The robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems. IEEE Control Systems, 40(1), 26–44. https://doi.org/10.1109/MCS.2019.2949973

Xiao, Y., Zhang, L., Jin, X., & Kong, Z. (2018). Event-triggered flocking control of mas and its application in maintaining of power line communication system. IPPTA: Quarterly Journal of Indian Pulp and Paper Technical Association, 30(4), 231–240.

Xu, H., & Carrillo, L. R. G. (2017). Fast reinforcement learning based distributed optimal flocking control and network co-design for uncertain networked multi-UAV system (R. E. Karlsen, D. W. Gage, C. M. Shoemaker, & H. G. Nguyen, Eds.). Unmanned Systems Technology XIX, 10195(1), 1–6. https://doi.org/10.1117/12.2262877

Yang, J., Wang, X., & Bauer, P. (2018). Line and v-shape formation based distributed processing for robotic swarms. Sensors, 18(8), 2543. https://doi.org/10.3390/s18082543

Yang, J., Grosu, R., Smolka, S. A., & Tiwari, A. Love thy neighbor: V-formation as a problem of model predictive control (invited paper). In: 27th international conference on concurrency theory (concur 2016). 2016, 4:1–4:5. https:// doi.org/ 10.4230/LIPIcs.CONCUR.2016.4.

Yuan, Q., Zhan, J., & Li, X. (2017). Outdoor flocking of quadcopter drones with decentralized model predictive control. ISA Transactions, 71, 84–92. https://doi.org/10.1016/j.isatra.2017.07.005

Yuan, W., Ganganath, N., Cheng, C., Qing, G., Lau, F., & Zhao, Y. (2020). Path-planning-enabled semiflocking control for multitarget monitoring in mobile sensor networks. IEEE Transactions on Industrial Informatics, 16(7), 4778–4787. https://doi.org/10.1109/TII.2019.2959330

Zhang, H.-T., Chen, M., Stan, G.-B., Zhou, T., & Maciejowski, J. (2008). Collective behavior coordination with predictive mechanisms. IEEE Circuits and Systems Magazine, 8(3), 67–85. https://doi.org/10.1109/MCAS.2008.928446

Zhu, B., Xie, L., & Han, D. Recent developments in control and optimization of swarm systems: A brief survey. In: 2016 12th IEEE international conference on control and automation (ICCA). 2016, 1–6. https://doi.org/10.1109/ICCA.2016.7505246.

How to Cite

APA

Martínez S., F. H. (2021). Review of flocking organization strategies for robot swarms. Tekhnê, 18(1), 13–20. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19257

ACM

[1]
Martínez S., F.H. 2021. Review of flocking organization strategies for robot swarms. Tekhnê. 18, 1 (Jun. 2021), 13–20.

ACS

(1)
Martínez S., F. H. Review of flocking organization strategies for robot swarms. Tekhnê 2021, 18, 13-20.

ABNT

MARTÍNEZ S., Fredy H. Review of flocking organization strategies for robot swarms. Tekhnê, [S. l.], v. 18, n. 1, p. 13–20, 2021. Disponível em: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19257. Acesso em: 20 jan. 2025.

Chicago

Martínez S., Fredy H. 2021. “Review of flocking organization strategies for robot swarms”. Tekhnê 18 (1):13-20. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19257.

Harvard

Martínez S., F. H. (2021) “Review of flocking organization strategies for robot swarms”, Tekhnê, 18(1), pp. 13–20. Available at: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19257 (Accessed: 20 January 2025).

IEEE

[1]
F. H. Martínez S., “Review of flocking organization strategies for robot swarms”, Tekhnê, vol. 18, no. 1, pp. 13–20, Jun. 2021.

MLA

Martínez S., Fredy H. “Review of flocking organization strategies for robot swarms”. Tekhnê, vol. 18, no. 1, June 2021, pp. 13-20, https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19257.

Turabian

Martínez S., Fredy H. “Review of flocking organization strategies for robot swarms”. Tekhnê 18, no. 1 (June 25, 2021): 13–20. Accessed January 20, 2025. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19257.

Vancouver

1.
Martínez S. FH. Review of flocking organization strategies for robot swarms. Tekhnê [Internet]. 2021 Jun. 25 [cited 2025 Jan. 20];18(1):13-20. Available from: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19257

Download Citation

Visitas

71

Downloads

Loading...