Publicado:
2022-02-27Número:
Vol. 9 Núm. 1 (2021): Enero-JulioSección:
InvestigaciónEstudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario
Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences
Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences
Palabras clave:
Preferencias de usuario, mecanismos de análisis de emociones, neuropsicología. (es).Palabras clave:
User preferences, encephalographic signals, neuropsychology. (en).Descargas
Resumen (es)
En el presente artículo se muestra una revisión bibliográfica de la literatura académica relacionada con la temática “análisis de emociones en la medición de preferencias de usuario”, acompañada de una exploración de la información actual, con el fin de presentar un fundamento conceptual, teórico y estadístico para trabajos de investigación que necesiten indagar sobre las preferencias de usuario utilizando diferentes mecanismos para su estudio, por ejemplo, en el área de la neuropsicología. De igual manera, sirva como base en la toma de decisión sobre cual método de análisis de emociones podría ser utilizado de acuerdo al trabajo que se desee desarrollar.
Resumen (en)
This article shows a bibliographic review of the academic literature related to the theme "analysis of emotions in the measurement of user preferences", accompanied by an exploration of current information, in order to present a conceptual, theoretical and statistics for research works that need to investigate user preferences using different mechanisms for their study, for example, in the area of neuropsychology. In the same way, it serves as a basis for making decisions about which method of analysis of emotions could be used according to the work that you want to develop.
Referencias
Referencias
Yu, X., Chen, Z., Yang, W. S., Hu, X., Yan, E., & Li, G. (2018). Large-scale joint topic, sentiment & user preference analysis for online reviews. Proceedings -2017 IEEE International Conference on Big Data, Big Data 2017, 2018-Janua, 847–856.https://doi.org/10.1109/BigData.2017.82580007
Pereira, F. S. F., Gama, J., de Amo, S., & Oliveira, G. M. B. (2018). On analyzing user preference dynamics with temporal social networks. Machine Learning,107(11), 1745–1773. https://doi.org/10.1007/s10994-018-5740-2
Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M, (2019).Cognitive and Neural Bases of Multi-Attribute, Multi-Alternative, Value-based Decisions, Trends in Cognitive Sciences, 23(3), 251–263. https://doi.org/10.1016/j.tics.2018.12.003
Golnar-Nik, P., Farashi, S., & Safari, M. S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiology and Behavior, 207(August 2018), 90–98. https://doi.org/10.1016/j.physbeh.2019.04.025
Gómez, E., Navas, D., Aponte, G., Betancourt, l. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DYNA, 81,158-163.
Chambua, J., Niu, Z., & Zhu, Y. (2019). User preferences prediction approach based on embedded deep summaries. Expert Systems with Applications, 132,87–98. https://doi.org/10.1016/j.eswa.2019.04.047
Zhang, Z., Zou, C., Ding, R., & Chen, Z. (2019). VCG: Exploiting visual contents and geographical influence for Point-of-Interest recommendation. Neurocomputing, 357, 53–65. https://doi.org/10.1016/j.neucom.2019.04.07
Kim, H. G., Kim, G. Y., & Kim, J. Y. (2019). Music Recommendation System Using Human Activity Recognition from Accelerometer Data. IEEE Transactions on Consumer Electronics, 65(3), 349–358. https://doi.org/10.1109/TCE.2019.2924177
Cheng, L. C., & Lin, M. C. (2019). A hybrid recommender system for the mining of consumer preferences from their reviews. Journal of Information Science, (1). https://doi.org/10.1177/0165551519849510
Cheng, L. C., & Lin, M. C. (2019). A hybrid recommender system for the mining of consumer preferences from their reviews. Journal of Information Science, (1).
https://doi.org/10.1177/0165551519849510
Wang, Shuo, & Chiang, H. D. (2019). Constrained multiobjective nonlinear optimization: A user preference enabling method. IEEE Transactions on Cybernetics, 49(7), 2779–2791. https://doi.org/10.1109/TCYB.2018.2833281
Telpaz, A., Webb, R., & Levy, D. J. (2015). Using EEG to predict consumers’ future choices. Journal of Marketing Research, 52(4), 511–529. https://doi.org/10.1509/jmr.13.0564
Long, Y., Lu, Q., Xiao, Y., Li, M., & Huang, C. R. (2016). Domain-specific user preference prediction based on multiple user activities. Proceedings – 2016 IEEE International Conference on Big Data, Big Data 2016, 3913–3921. https://doi.org/10.1109/BigData.2016.7841066
Wang, Shanfeng, Gong, M., Qin, C., & Yang, J. (2018). A Multi-objective Framework for Location Recommendation Based on User Preference. Proceedings - 13th International Conference on Computational Intelligence and Security, CIS 2017, 2018-January, 39–43. https://doi.org/10.1109/CIS.2017.00017
Su, C., Zhou, Q., Xie, X., & Wu, D. (2019). Personalized Check-in Prediction Model Based on User’s Dissimilarity and Regression. IEEE Access, 7, 79418–79432. https://doi.org/10.1109/ACCESS.2019.2923435
Wangwatcharakul, C., & Wongthanavasu, S. (2018). Improving Dynamic Recommender System Based on Item Clustering for Preference Drifts. Proceeding of 2018 15th International Joint Conference on Computer Science and Software Engineering, JCSSE 2018, 1–6. https://doi.org/10.1109/JCSSE.2018.8457395
Mlika, F., & Karoui, W. (2020). Proposed Model to Intelligent Recommendation System based on Markov Chains and Grouping of Genres. Procedia Computer Science, 176, 868–877. https://doi.org/10.1016/j.procs.2020.09.082
Qi, L., Hu, C., Zhang, X., Khosravi, M. R., Sharma, S., Pang, S., & Wang, T. (2021). Privacy-Aware Data Fusion and Prediction With Spatial-Temporal Context for Smart City Industrial Environment. IEEE Transactions on Industrial Informatics, 17(6), 4159–4167. https://doi.org/10.1109/TII.2020.3012157
Tobón, C., Velilla, L., Trujillo, N., Pineda, D., Ibañez, A., Duque, J., … Decety, J. (2015). Emotional processing in Colombian ex-combatants and its relationship with empathy and executive functions. Social Neuroscience, 10(2), 153–165. https://doi.org/10.1080/17470919.2014.969406
Brown, R., James, C., Henderson, L. A., & Macefield, V. G. (2012). Autonomic markers of emotional processing: Skin sympathetic nerve activity in humans during exposure to emotionally charged images. Frontiers in Physiology, 3 OCT(October), 1–6. https://doi.org/10.3389/fphys.2012.00394
Ramos, C., Duque-Grajales, J., Rendón, J., Montoya-Betancur, A., Baena, A., Pineda, D., & Tobón, C. (2018). Changes in Resting EEG in Colombian Ex- combatants ith Antisocial Personality Disorder. Revista Colombiana de Psiquiatria, 47(2), 90–97. https://doi.org/10.1016/j.rcp.2017.02.001
Parra, M. A., Sánchez, M. G., Valencia, S., & Trujillo, N. (2018). Attentional bias during emotional processing: evidence from an emotional flanker task using IAPS. Cognition and Emotion, 32(2), 275–285. https://doi.org/10.1080/02699931.2017.1298994
Betella, A., & Verschure, P. F. M. J. (2016). The affective slider: A digital self- assessment scale for the measurement of human emotions. PLoS ONE, 11(2), 1–11. https://doi.org/10.1371/journal.pone.0148037
Miccoli, L., Delgado, R., Guerra, P., Versace, F., Rodríguez-Ruiz, S., & Fernández- Santaella, M. C. (2016). Affective pictures and the open library of affective foods (OLAF): Tools to investigate emotions toward food in adults. PLoS ONE,11(8), 1–13. https://doi.org/10.1371/journal.pone.0158991
Xu, Z., Zhu, R., Shen, C., Zhang, B., Gao, Q., Xu, Y., & Wang, W. (2017). Selecting pure-emotion materials from the International Affective Picture System (IAPS) by Chinese university students: A study based on intensity- ratings only. Heliyon, 3(8), e00389. https://doi.org/10.1016/j.heliyon.2017.e00389
Ćosić, K., Popović, S., Kukolja, D., Dropuljić, B., Ivanec, D., & Tonković, M. (2016).Multimodal analysis of startle type responses. Computer Methods and Programs in Biomedicine, 129, 186–202. https://doi.org/10.1016/j.cmpb.2016.01.002
Bustos López M, Hernández A , Vásquez R, Hernández G, Zatarain R, M. L. B. E. (2008). EmoRemSys: Sistema de recomendación de recursos educativos basado en detección de emociones, (1), 0–82. https://doi.org/10.17013/risti.17.80
Ganin, I. P., Kosichenko, E. A., & Kaplan, A. Y. (2018). Properties of EEG Responses to Emotionally Significant Stimuli Using a P300 Wave-Based Brain–Computer Interface. Neuroscience and Behavioral Physiology, 48(9),1093–1099. https://doi.org/10.1007/s11055-018-0672-7
Oliveira, S. M. S. de, Medeiros, C. S. P. de, Pacheco, T. B. F., Bessa, N. P. O. S., Silva, F. G. M., Tavares, N. S. A., … Cavalcanti, F. A. da C. (2018). Electroencephalographic changes using virtual reality program: technical note. Neurological Research, 40(3), 160–165. https://doi.org/10.1080/01616412.2017.1420584
Mohammadi, Z., Frounchi, J., & Amiri, M. (2017). Wavelet-based emotion recognition system using EEG signal. Neural Computing and Applications, 28(8), 1985–1990. https://doi.org/10.1007/s00521-015-2149-8
Id, S. K. E., Agres, K. R., Guan, C., & Cheng, G. (2019). Interface for Emotion Mediation, 1–24.
Choi, K. H., Kim, J., Kwon, O. S., Kim, M. J., Ryu, Y. H., & Park, J. E. (2017). Is heart rate variability (HRV) an adequate tool for evaluating human emotions?– A focus on the use of the International Affective Picture System (IAPS). Psychiatry Research, 251(July 2016), 192–196. https://doi.org/10.1016/j.psychres.2017.02.025
Shao, Z., Chandramouli, R., Subbalakshmi, K. P., & Boyadjiev, C. T. (2019). An analytical system for user emotion extraction, mental state modeling, and rating. Expert Systems with Applications, 124, 82–96. https://doi.org/10.1016/j.eswa.2019.01.004
Wu, Y., Li, M., & Wang, J. (2016). Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. Journal of NeuroEngineering and Rehabilitation, 13(1), 1–12. https://doi.org/10.1186/s12984-016-0179-9
Gao, Q., & Ma, P. (2020). Graph Neural Network and Context-Aware Based User Behavior Prediction and Recommendation System Research. Computational Intelligence and Neuroscience, 2020, 1–14. https://doi.org/10.1155/2020/8812370
Liao, M., & Sundar, S. S. (2021). When E-Commerce Personalization Systems Show and Tell: Investigating the Relative Persuasive Appeal of Content-Based versus Collaborative Filtering. Journal of Advertising, 1–16. https://doi.org/10.1080/00913367.2021.1887013
Osman, N. A., Mohd Noah, S. A., Darwich, M., & Mohd, M. (2021). Integrating contextual sentiment analysis in collaborative recommender systems. PLOS ONE, 16(3), e0248695. https://doi.org/10.1371/journal.pone.0248695
MAHADEVAN, A., & AROCK, M. (2020). Integrated topic modeling and sentiment analysis: a review rating prediction approach for recommender systems. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 28(1), 107–123. https://doi.org/10.3906/elk-1905-114
Ural, G., Kaçar, F., & Canan, S. (2019). Wavelet phase coherence estimation of EEG signals for neuromarketing studies. NeuroQuantology, 17(2), 112–120. https://doi.org/10.14704/nq.2019.17.02.1971
Murugappan, M., Murugappan, S., Balaganapathy, B., & Gerard, C. (2014). Wireless EEG signals based Neuromarketing system using Fast Fourier Transform (FFT). Proceedings - 2014 IEEE 10th International Colloquium on Signal Processing and Its Applications, CSPA 2014, 25–30. https://doi.org/10.1109/CSPA.2014.6805714
Taqwa, T., Suhendra, A., Hermita, M., & Darmayantie, A. (2016). Implementation of Naïve Bayes method for product purchasing decision using neural impulse actuator in neuromarketing. Proceedings of 2015 International Conference on Information and Communication Technology and Systems, ICTS 2015, 113–118. https://doi.org/10.1109/ICTS.2015.7379882
Márquez, B. Y., & Alanis, A. (2017). Classification Algorithm to Measure the Human Emotion : I Like It , I Don ’ t Like It in Neuromarketing, 15(11), 2177–2184.
Oon, H. N., Saidatul, A., & Ibrahim, Z. (2018). Analysis on Non-Linear Features of Electroencephalogram (EEG) Signal for Neuromarketing Application. 2018. International Conference on Computational Approach in Smart Systems Design and Applications, ICASSDA 2018, 1–8. https://doi.org/10.1109/ICASSDA.2018.8477618
Ural, G., Kaçar, F., & Canan, S. (2019). Wavelet phase coherence estimation of EEG signals for neuromarketing studies. NeuroQuantology, 17(2), 112–120. https://doi.org/10.14704/nq.2019.17.02.1971
Hakim, A., & Levy, D. J. (2019). A gateway to consumers’ minds: Achievements, caveats, and prospects of electroencephalography-based prediction in neuromarketing. Wiley Interdisciplinary Reviews: Cognitive Science, 10(2), 1–21. https://doi.org/10.1002/wcs.1485
Suhaimi, N. S., Mountstephens, J., & Teo, J. (2020). EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/8875426
Mane, R., Chouhan, T., & Guan, C. (2020). BCI for stroke rehabilitation: Motor and beyond. Journal of Neural Engineering, 17(4). https://doi.org/10.1088/1741-2552/aba162
Katyal, E. A., & Singla, R. (2021). EEG-based hybrid QWERTY mental speller with high information transfer rate. Medical and Biological Engineering and Computing, 59(3), 633–661. https://doi.org/10.1007/s11517-020-02310-w
Harmon-Jones, E., & Beer, J. S. (2009). Methods in social neuroscience. New York. Retrieved from http://books.google.com/books?hl=en&lr=&id=P0o4DqMBmrYC&oi=fnd&pg=PA1&dq=methods+in+social+neuroscience&ots= S73-nEjlln&sig=n0z_fBmBkNqb6qx69OvRf08VIzc
Adolphs, R., & Anderson, D. J. (2018). The Neuroscience of Emotion.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Derechos de autor 2022 Tecnología Investigación y Academia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Reconocimiento – NoComercial – CompartirIgual (by-nc-sa): No se permite el uso comercial de la obra original, las obras derivadas deben circular con las mismas condiciones de esta licencia realizando la correcta atribución al autor.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional