Publicado:

2022-02-27

Número:

Vol. 9 Núm. 1 (2021): Enero-Julio

Sección:

Investigación

Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario

Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences

Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences

Autores/as

  • Nancy Yaneth G´élvez García Universidad Distrital Francisco José de Caldas
  • Montenegro Marín Carlos Enrique Universidad Distrital Francisco José de Caldas
  • Gaona García Paulo Alonso Universidad Distrital Francisco José de Caldas

Palabras clave:

User preferences, encephalographic signals, neuropsychology. (en).

Palabras clave:

Preferencias de usuario, mecanismos de análisis de emociones, neuropsicología. (es).

Descargas

Resumen (es)

En el presente artículo se muestra una revisión bibliográfica de la literatura académica relacionada con la temática “análisis de emociones en la medición de preferencias de usuario”, acompañada de una exploración de la información actual, con el fin de presentar un fundamento conceptual, teórico y estadístico para trabajos de investigación que necesiten indagar sobre las preferencias de usuario utilizando diferentes mecanismos para su estudio, por ejemplo, en el área de la neuropsicología. De igual manera, sirva como base en la toma de decisión sobre cual método de análisis de emociones podría ser utilizado de acuerdo al trabajo que se desee desarrollar.

Resumen (en)

This article shows a bibliographic review of the academic literature related to the theme "analysis of emotions in the measurement of user preferences", accompanied by an exploration of current information, in order to present a conceptual, theoretical and statistics for research works that need to investigate user preferences using different mechanisms for their study, for example, in the area of ​​neuropsychology. In the same way, it serves as a basis for making decisions about which method of analysis of emotions could be used according to the work that you want to develop.

Referencias

Referencias

Yu, X., Chen, Z., Yang, W. S., Hu, X., Yan, E., & Li, G. (2018). Large-scale joint topic, sentiment & user preference analysis for online reviews. Proceedings -2017 IEEE International Conference on Big Data, Big Data 2017, 2018-Janua, 847–856.https://doi.org/10.1109/BigData.2017.82580007

Pereira, F. S. F., Gama, J., de Amo, S., & Oliveira, G. M. B. (2018). On analyzing user preference dynamics with temporal social networks. Machine Learning,107(11), 1745–1773. https://doi.org/10.1007/s10994-018-5740-2

Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M, (2019).Cognitive and Neural Bases of Multi-Attribute, Multi-Alternative, Value-based Decisions, Trends in Cognitive Sciences, 23(3), 251–263. https://doi.org/10.1016/j.tics.2018.12.003

Golnar-Nik, P., Farashi, S., & Safari, M. S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiology and Behavior, 207(August 2018), 90–98. https://doi.org/10.1016/j.physbeh.2019.04.025

Gómez, E., Navas, D., Aponte, G., Betancourt, l. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DYNA, 81,158-163.

Chambua, J., Niu, Z., & Zhu, Y. (2019). User preferences prediction approach based on embedded deep summaries. Expert Systems with Applications, 132,87–98. https://doi.org/10.1016/j.eswa.2019.04.047

Zhang, Z., Zou, C., Ding, R., & Chen, Z. (2019). VCG: Exploiting visual contents and geographical influence for Point-of-Interest recommendation. Neurocomputing, 357, 53–65. https://doi.org/10.1016/j.neucom.2019.04.07

Kim, H. G., Kim, G. Y., & Kim, J. Y. (2019). Music Recommendation System Using Human Activity Recognition from Accelerometer Data. IEEE Transactions on Consumer Electronics, 65(3), 349–358. https://doi.org/10.1109/TCE.2019.2924177

Cheng, L. C., & Lin, M. C. (2019). A hybrid recommender system for the mining of consumer preferences from their reviews. Journal of Information Science, (1). https://doi.org/10.1177/0165551519849510

Cheng, L. C., & Lin, M. C. (2019). A hybrid recommender system for the mining of consumer preferences from their reviews. Journal of Information Science, (1).

https://doi.org/10.1177/0165551519849510

Wang, Shuo, & Chiang, H. D. (2019). Constrained multiobjective nonlinear optimization: A user preference enabling method. IEEE Transactions on Cybernetics, 49(7), 2779–2791. https://doi.org/10.1109/TCYB.2018.2833281

Telpaz, A., Webb, R., & Levy, D. J. (2015). Using EEG to predict consumers’ future choices. Journal of Marketing Research, 52(4), 511–529. https://doi.org/10.1509/jmr.13.0564

Long, Y., Lu, Q., Xiao, Y., Li, M., & Huang, C. R. (2016). Domain-specific user preference prediction based on multiple user activities. Proceedings – 2016 IEEE International Conference on Big Data, Big Data 2016, 3913–3921. https://doi.org/10.1109/BigData.2016.7841066

Wang, Shanfeng, Gong, M., Qin, C., & Yang, J. (2018). A Multi-objective Framework for Location Recommendation Based on User Preference. Proceedings - 13th International Conference on Computational Intelligence and Security, CIS 2017, 2018-January, 39–43. https://doi.org/10.1109/CIS.2017.00017

Su, C., Zhou, Q., Xie, X., & Wu, D. (2019). Personalized Check-in Prediction Model Based on User’s Dissimilarity and Regression. IEEE Access, 7, 79418–79432. https://doi.org/10.1109/ACCESS.2019.2923435

Wangwatcharakul, C., & Wongthanavasu, S. (2018). Improving Dynamic Recommender System Based on Item Clustering for Preference Drifts. Proceeding of 2018 15th International Joint Conference on Computer Science and Software Engineering, JCSSE 2018, 1–6. https://doi.org/10.1109/JCSSE.2018.8457395

Mlika, F., & Karoui, W. (2020). Proposed Model to Intelligent Recommendation System based on Markov Chains and Grouping of Genres. Procedia Computer Science, 176, 868–877. https://doi.org/10.1016/j.procs.2020.09.082

Qi, L., Hu, C., Zhang, X., Khosravi, M. R., Sharma, S., Pang, S., & Wang, T. (2021). Privacy-Aware Data Fusion and Prediction With Spatial-Temporal Context for Smart City Industrial Environment. IEEE Transactions on Industrial Informatics, 17(6), 4159–4167. https://doi.org/10.1109/TII.2020.3012157

Tobón, C., Velilla, L., Trujillo, N., Pineda, D., Ibañez, A., Duque, J., … Decety, J. (2015). Emotional processing in Colombian ex-combatants and its relationship with empathy and executive functions. Social Neuroscience, 10(2), 153–165. https://doi.org/10.1080/17470919.2014.969406

Brown, R., James, C., Henderson, L. A., & Macefield, V. G. (2012). Autonomic markers of emotional processing: Skin sympathetic nerve activity in humans during exposure to emotionally charged images. Frontiers in Physiology, 3 OCT(October), 1–6. https://doi.org/10.3389/fphys.2012.00394

Ramos, C., Duque-Grajales, J., Rendón, J., Montoya-Betancur, A., Baena, A., Pineda, D., & Tobón, C. (2018). Changes in Resting EEG in Colombian Ex- combatants ith Antisocial Personality Disorder. Revista Colombiana de Psiquiatria, 47(2), 90–97. https://doi.org/10.1016/j.rcp.2017.02.001

Parra, M. A., Sánchez, M. G., Valencia, S., & Trujillo, N. (2018). Attentional bias during emotional processing: evidence from an emotional flanker task using IAPS. Cognition and Emotion, 32(2), 275–285. https://doi.org/10.1080/02699931.2017.1298994

Betella, A., & Verschure, P. F. M. J. (2016). The affective slider: A digital self- assessment scale for the measurement of human emotions. PLoS ONE, 11(2), 1–11. https://doi.org/10.1371/journal.pone.0148037

Miccoli, L., Delgado, R., Guerra, P., Versace, F., Rodríguez-Ruiz, S., & Fernández- Santaella, M. C. (2016). Affective pictures and the open library of affective foods (OLAF): Tools to investigate emotions toward food in adults. PLoS ONE,11(8), 1–13. https://doi.org/10.1371/journal.pone.0158991

Xu, Z., Zhu, R., Shen, C., Zhang, B., Gao, Q., Xu, Y., & Wang, W. (2017). Selecting pure-emotion materials from the International Affective Picture System (IAPS) by Chinese university students: A study based on intensity- ratings only. Heliyon, 3(8), e00389. https://doi.org/10.1016/j.heliyon.2017.e00389

Ćosić, K., Popović, S., Kukolja, D., Dropuljić, B., Ivanec, D., & Tonković, M. (2016).Multimodal analysis of startle type responses. Computer Methods and Programs in Biomedicine, 129, 186–202. https://doi.org/10.1016/j.cmpb.2016.01.002

Bustos López M, Hernández A , Vásquez R, Hernández G, Zatarain R, M. L. B. E. (2008). EmoRemSys: Sistema de recomendación de recursos educativos basado en detección de emociones, (1), 0–82. https://doi.org/10.17013/risti.17.80

Ganin, I. P., Kosichenko, E. A., & Kaplan, A. Y. (2018). Properties of EEG Responses to Emotionally Significant Stimuli Using a P300 Wave-Based Brain–Computer Interface. Neuroscience and Behavioral Physiology, 48(9),1093–1099. https://doi.org/10.1007/s11055-018-0672-7

Oliveira, S. M. S. de, Medeiros, C. S. P. de, Pacheco, T. B. F., Bessa, N. P. O. S., Silva, F. G. M., Tavares, N. S. A., … Cavalcanti, F. A. da C. (2018). Electroencephalographic changes using virtual reality program: technical note. Neurological Research, 40(3), 160–165. https://doi.org/10.1080/01616412.2017.1420584

Mohammadi, Z., Frounchi, J., & Amiri, M. (2017). Wavelet-based emotion recognition system using EEG signal. Neural Computing and Applications, 28(8), 1985–1990. https://doi.org/10.1007/s00521-015-2149-8

Id, S. K. E., Agres, K. R., Guan, C., & Cheng, G. (2019). Interface for Emotion Mediation, 1–24.

Choi, K. H., Kim, J., Kwon, O. S., Kim, M. J., Ryu, Y. H., & Park, J. E. (2017). Is heart rate variability (HRV) an adequate tool for evaluating human emotions?– A focus on the use of the International Affective Picture System (IAPS). Psychiatry Research, 251(July 2016), 192–196. https://doi.org/10.1016/j.psychres.2017.02.025

Shao, Z., Chandramouli, R., Subbalakshmi, K. P., & Boyadjiev, C. T. (2019). An analytical system for user emotion extraction, mental state modeling, and rating. Expert Systems with Applications, 124, 82–96. https://doi.org/10.1016/j.eswa.2019.01.004

Wu, Y., Li, M., & Wang, J. (2016). Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. Journal of NeuroEngineering and Rehabilitation, 13(1), 1–12. https://doi.org/10.1186/s12984-016-0179-9

Gao, Q., & Ma, P. (2020). Graph Neural Network and Context-Aware Based User Behavior Prediction and Recommendation System Research. Computational Intelligence and Neuroscience, 2020, 1–14. https://doi.org/10.1155/2020/8812370

Liao, M., & Sundar, S. S. (2021). When E-Commerce Personalization Systems Show and Tell: Investigating the Relative Persuasive Appeal of Content-Based versus Collaborative Filtering. Journal of Advertising, 1–16. https://doi.org/10.1080/00913367.2021.1887013

Osman, N. A., Mohd Noah, S. A., Darwich, M., & Mohd, M. (2021). Integrating contextual sentiment analysis in collaborative recommender systems. PLOS ONE, 16(3), e0248695. https://doi.org/10.1371/journal.pone.0248695

MAHADEVAN, A., & AROCK, M. (2020). Integrated topic modeling and sentiment analysis: a review rating prediction approach for recommender systems. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 28(1), 107–123. https://doi.org/10.3906/elk-1905-114

Ural, G., Kaçar, F., & Canan, S. (2019). Wavelet phase coherence estimation of EEG signals for neuromarketing studies. NeuroQuantology, 17(2), 112–120. https://doi.org/10.14704/nq.2019.17.02.1971

Murugappan, M., Murugappan, S., Balaganapathy, B., & Gerard, C. (2014). Wireless EEG signals based Neuromarketing system using Fast Fourier Transform (FFT). Proceedings - 2014 IEEE 10th International Colloquium on Signal Processing and Its Applications, CSPA 2014, 25–30. https://doi.org/10.1109/CSPA.2014.6805714

Taqwa, T., Suhendra, A., Hermita, M., & Darmayantie, A. (2016). Implementation of Naïve Bayes method for product purchasing decision using neural impulse actuator in neuromarketing. Proceedings of 2015 International Conference on Information and Communication Technology and Systems, ICTS 2015, 113–118. https://doi.org/10.1109/ICTS.2015.7379882

Márquez, B. Y., & Alanis, A. (2017). Classification Algorithm to Measure the Human Emotion : I Like It , I Don ’ t Like It in Neuromarketing, 15(11), 2177–2184.

Oon, H. N., Saidatul, A., & Ibrahim, Z. (2018). Analysis on Non-Linear Features of Electroencephalogram (EEG) Signal for Neuromarketing Application. 2018. International Conference on Computational Approach in Smart Systems Design and Applications, ICASSDA 2018, 1–8. https://doi.org/10.1109/ICASSDA.2018.8477618

Ural, G., Kaçar, F., & Canan, S. (2019). Wavelet phase coherence estimation of EEG signals for neuromarketing studies. NeuroQuantology, 17(2), 112–120. https://doi.org/10.14704/nq.2019.17.02.1971

Hakim, A., & Levy, D. J. (2019). A gateway to consumers’ minds: Achievements, caveats, and prospects of electroencephalography-based prediction in neuromarketing. Wiley Interdisciplinary Reviews: Cognitive Science, 10(2), 1–21. https://doi.org/10.1002/wcs.1485

Suhaimi, N. S., Mountstephens, J., & Teo, J. (2020). EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities. Computational Intelligence and Neuroscience, 2020. https://doi.org/10.1155/2020/8875426

Mane, R., Chouhan, T., & Guan, C. (2020). BCI for stroke rehabilitation: Motor and beyond. Journal of Neural Engineering, 17(4). https://doi.org/10.1088/1741-2552/aba162

Katyal, E. A., & Singla, R. (2021). EEG-based hybrid QWERTY mental speller with high information transfer rate. Medical and Biological Engineering and Computing, 59(3), 633–661. https://doi.org/10.1007/s11517-020-02310-w

Harmon-Jones, E., & Beer, J. S. (2009). Methods in social neuroscience. New York. Retrieved from http://books.google.com/books?hl=en&lr=&id=P0o4DqMBmrYC&oi=fnd&pg=PA1&dq=methods+in+social+neuroscience&ots= S73-nEjlln&sig=n0z_fBmBkNqb6qx69OvRf08VIzc

Adolphs, R., & Anderson, D. J. (2018). The Neuroscience of Emotion.

Cómo citar

APA

G´élvez García, N. Y., Carlos Enrique, M. M., & Paulo Alonso, G. G. (2022). Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences. Tecnología Investigación y Academia, 9(1), 91–115. Recuperado a partir de https://revistas.udistrital.edu.co/index.php/tia/article/view/19006

ACM

[1]
G´élvez García, N.Y., Carlos Enrique, M.M. y Paulo Alonso, G.G. 2022. Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences. Tecnología Investigación y Academia. 9, 1 (feb. 2022), 91–115.

ACS

(1)
G´élvez García, N. Y.; Carlos Enrique, M. M.; Paulo Alonso, G. G. Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences. Tecnol. Investig. Academia TIA 2022, 9, 91-115.

ABNT

G´ÉLVEZ GARCÍA, N. Y.; CARLOS ENRIQUE, M. M.; PAULO ALONSO, G. G. Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences. Tecnología Investigación y Academia, [S. l.], v. 9, n. 1, p. 91–115, 2022. Disponível em: https://revistas.udistrital.edu.co/index.php/tia/article/view/19006. Acesso em: 21 may. 2022.

Chicago

G´élvez García, Nancy Yaneth, Montenegro Marín Carlos Enrique, y Gaona García Paulo Alonso. 2022. «Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences». Tecnología Investigación y Academia 9 (1):91-115. https://revistas.udistrital.edu.co/index.php/tia/article/view/19006.

Harvard

G´élvez García, N. Y., Carlos Enrique, M. M. y Paulo Alonso, G. G. (2022) «Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences», Tecnología Investigación y Academia, 9(1), pp. 91–115. Disponible en: https://revistas.udistrital.edu.co/index.php/tia/article/view/19006 (Accedido: 21mayo2022).

IEEE

[1]
N. Y. G´élvez García, M. M. Carlos Enrique, y G. G. Paulo Alonso, «Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences», Tecnol. Investig. Academia TIA, vol. 9, n.º 1, pp. 91–115, feb. 2022.

MLA

G´élvez García, N. Y., M. M. Carlos Enrique, y G. G. Paulo Alonso. «Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences». Tecnología Investigación y Academia, vol. 9, n.º 1, febrero de 2022, pp. 91-115, https://revistas.udistrital.edu.co/index.php/tia/article/view/19006.

Turabian

G´élvez García, Nancy Yaneth, Montenegro Marín Carlos Enrique, y Gaona García Paulo Alonso. «Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences». Tecnología Investigación y Academia 9, no. 1 (febrero 27, 2022): 91–115. Accedido mayo 21, 2022. https://revistas.udistrital.edu.co/index.php/tia/article/view/19006.

Vancouver

1.
G´élvez García NY, Carlos Enrique MM, Paulo Alonso GG. Estudio y estructuración bibliográfica del estado del arte sobre el análisis de emociones en la predicción de preferencias de usuario: Study and bibliographic structuring of the state of the art on the analysis of emotions in the prediction of user preferences. Tecnol. Investig. Academia TIA [Internet]. 27 de febrero de 2022 [citado 21 de mayo de 2022];9(1):91-115. Disponible en: https://revistas.udistrital.edu.co/index.php/tia/article/view/19006

Descargar cita

Visitas

18

Descargas

Los datos de descargas todavía no están disponibles.