Publicado:
2024-04-20Número:
Vol. 11 Núm. 2 (2023): Agosto-diciembreSección:
InvestigaciónAnálisis bibliométrico de las publicaciones relacionadas con el uso de las tecnologías de la información y comunicaciones en la agricultura
Bibliometric analysis of publications related to the use of information and communication technologies in agriculture
Palabras clave:
agriculture, information and communications technologies, sustainable development, precision agriculture, smart agriculture, big data, internet of things, wireless sensor networks (en).Palabras clave:
agricultura, tecnologías de la información y comunicaciones, desarrollo sostenible, agricultura de precisión, agricultura inteligente, big data, internet de las cosas, redes de sensores inalámbricos (es).Descargas
Resumen (es)
El objetivó del estudio fue analizar, mediante indicadores bibliométricos, las publicaciones relacionadas con el uso de las Tecnologías de la Información y Comunicaciones (TIC) en la Agricultura entre los años 2014 y 2023 y de esta forma encontrar tendencias en esta área del saber. La metodología aplicada fue de tipo descriptivo con enfoque cuantitativo. Inicialmente se realizó la búsqueda las publicaciones en la base de datos SCOPUS, a través de una ecuación de búsqueda. Se obtuvieron 2.825 publicaciones, la mayoría de esas publicaciones fueron de China, India y Estados Unidos. Se han incrementado el número de publicaciones desde el año 2018 y se ha mantenido estable desde el año 2020. Se identificaron dos tendencias temáticas, la primera es el uso de la TIC para ayudar a fomentar la agricultura sostenible y la segunda tendencia es el desarrollo de investigaciones para implementar la agricultura inteligente usando especialmente el Internet de las Cosas (IoT).
Resumen (en)
The objective of the study was to analyze, through bibliometric indicators, publications related to the use of Information and Communication Technologies (ICT) in agriculture between 2014 and 2023 and thus find trends in this area of knowledge. The methodology applied was descriptive with a quantitative approach. Initially, the publications were searched in the SCOPUS database, through a search equation. A total of 2,825 publications were obtained, most of them from China, India and the United States. There has been an increase in the number of publications since 2018 and has been stable since 2020. Two thematic trends were identified, the first is the use of ICT to help promote sustainable agriculture and the second trend is the development of research to implement smart agriculture using especially the Internet of Things (IoT).
Referencias
W. Zhang and B. Huang, “Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization,” Environ. Sci. Pollut. Res., vol. 22, no. 6, pp. 4475–4490, 2015.
H. O. Alvarado-Quiroa and F. Araya-Rodríguez, “Cambios de uso del suelo y crecimiento urbano. Estudio de caso en los municipios conurbados de la Mancomunidad Metrópoli de Los Altos, Quetzaltenango, Guatemala,” Tecnol. en Marcha, vol. 27, no. 1, pp. 104–113, Feb. 2014.
B. Badiani et al., “Lake Garda lemon houses (Italy): Opportunities of a sensitive, marginal area in urban planning,” Chang. Adapt. Socio-Ecological Syst., vol. 3, no. 1, pp. 111–118, Dec. 2017.
J. Á. A. Hernández-Flores, B. Martínez-Corona, J. A. Méndez-Espinoza, R. Pérez-Avilés, J. Ramírez-Juárez, and H. Navarro-Garza, “Rurales y periurbanos: Una aproximación al proceso de conformación de la periferia poblana,” Papeles de población, vol. 15, no. 61, pp. 275–295, Sep. 2009.
C. Mazzocchi, G. Sali, and S. Corsi, “Land use conversion in metropolitan areas and the permanence of agriculture: Sensitivity Index of Agricultural Land (SIAL), a tool for territorial analysis,” Land use policy, vol. 35, pp. 155–162, 2013.
F. D. A. Rodrigues and F. Mosso, “ICT, Data and Rural Youth: challenges of the current context,” RECoDAF - Rev. Eletrônica Competências Digit. para Agric. Fam., vol. 4, no. 2, pp. 15–25, 2018.
S. Paquette and G. Domon, “Changing ruralities, changing landscapes: Exploring social recomposition using a multi-scale approach,” J. Rural Stud., vol. 19, no. 4, pp. 425–444, 2003.
D. C. Téllez, “La incidencia de la política agraria en el Gobierno Santos en el desarrollo del sector papero del departamento de Boyacá,” Universidad Colegio Mayor de Nuestra Señora del Rosario, 2017.
S. Deep and A. Saklani, “Urban sprawl modeling using cellular automata,” Egypt. J. Remote Sens. Sp. Sci., vol. 17, no. 2, pp. 179–187, 2014.
L. G. Firbank, S. S. Petit Sandrine, A. Blain, and R. J. Fuller, “Assessing the impacts of agricultural intensification on biodiversity: a British perspective.,” Trans. R. Soc. B, vol. 363, no. 1492, pp. 777–787, 2008.
L. A. Muñoz-Rios, J. Vargas-Villegas, and A. Suarez, “Local perceptions about rural abandonment drivers in the Colombian coffee region: Insights from the city of Manizales,” Land use policy, vol. 91, no. November 2019, p. 104361, 2020.
M. Sofer, “Pluriactivity in the Moshav: Family farming in Israel,” J. Rural Stud., vol. 17, no. 3, pp. 363–375, 2001.
I. G. A. C. IGAC, “Solo el 16 por ciento de los suelos de Colombia está blindado contra la ‘depredación ambiental’ del hombre | Noticias,” 2015. [Online]. Available: https://noticias.igac.gov.co/es/contenido/solo-el-16-por-ciento-de-los-suelos-de-colombia-esta-blindado-contra-la-depredacion. [Accessed: 05-Oct-2018].
J. M. Sánchez-Céspedes, J. P. Rodríguez-Miranda, and O. L. Ramos-Sandoval, “ARTIFICIAL INTELLIGENCE, AN ALTERNATIVE FOR GENERATING AGRICULTURAL PUBLIC POLICIES IN COLOMBIA – A REVIEW,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 10, no. 3, pp. 15677–15692, 2020.
J. M. Sánchez, O. J. Salcedo, and E. Rivas, Indicadores TIC : principales indicadores y modelos de medición de políticas públicas en el sector de las tecnologías de la información y comunicaciones - TIC, 1st ed., vol. 6, no. 11. Bogotá (Colombia): Editorial Universidad Distrital Francisco José de Caldas, 2019.
W. Czart, H. Gierszal, K. Pawlina, and M. Urbańska, “ICT for resource management and telematics in construction sites,” Procedia Eng., vol. 208, pp. 27–34, 2017.
A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics,” Int. J. Inf. Manage., vol. 35, no. 2, pp. 137–144, 2015.
Z. Huanan, X. Suping, and W. Jiannan, “Security and application of wireless sensor network,” Procedia Comput. Sci., vol. 183, pp. 486–492, 2021.
J. M. Sánchez, J. P. Rodríguez, and O. L. Ramos, “Decision Support Systems (DSS) Applied to the Formulation of Agricultural Public Policies,” Tecnura, vol. 24, no. 66, pp. 95–108, 2020.
J. Manyika et al., Un futuro que funciona: automatización, empleo y productividad. McKinsey Global Institute, 2017.
M. Agarwal, S. Ajemian, G. Tim, B. Microstrategy, R. Campbell, and S. Coggeshall, “Demystifying Big Data: A Practical Guide To Transforming The Business of Government Listing of Leadership and Commissioners,” pp. 1–40, 2013.
K. K. Pandey and D. Shukla, “Challenges of big data to big data mining with their processing framework,” Proc. - 2018 8th Int. Conf. Commun. Syst. Netw. Technol. CSNT 2018, pp. 89–94, 2018.
J. V Stafford, Precision agriculture ’13. Catalonia (Spain): Wageningen Academic Publishers, 2013.
Food and Agriculture Organization (FAO), Fondo Internacional de Desarrollo Agrícola (FIDA), United Nations Children’s Fund (UNICEF), Programa Mundial de Alimentos (PMA), and Organización Mundial de la Salud (OMS), El Estado De La Seguridad Alimentaria Y Nutricional En El Mundo. Roma: FAO, 2018.
S. H. Moon, Y. H. Kim, Y. H. Lee, and B. R. Moon, “Application of machine learning to an early warning system for very short-term heavy rainfall,” J. Hydrol., vol. 568, no. November 2018, pp. 1042–1054, 2019.
A. Prüss-Ustün, J. Wolf, C. Corvalán, R Bos, and M. Neira, Preventing disease through healthy environments: A global assessment of the environmental burden of disease, vol. 259. 2016.
W. Van Leeuwen et al., “Benchmarking enhancements to a decision support system for global crop production assessments,” Expert Syst. Appl., vol. 38, no. 7, pp. 8054–8065, 2011.
A. H. Aghmashhadi, G. T. Cirella, S. Zahedi, and A. Kazemi, “Water resource policy support system of the Caspian Basin,” AIMS Environ. Sci., vol. 6, no. 4, pp. 242–261, 2019.
NSFC, “About Us - NSFC at a Glance,” National Natural Science Foundation of China, 2020. [Online]. Available: http://www.nsfc.gov.cn/english/site_1/about/6.html. [Accessed: 12-May-2020].
Comisión Europea, “Qué hace la Comisión Europea en materia de estrategia y políticas | Comisión Europea,” Comisión Europea, 2020. [Online]. Available: https://ec.europa.eu/info/about-european-commission/what-european-commission-does/strategy-and-policy_es. [Accessed: 12-May-2020].
“Horizon 2020 - European Commission.” [Online]. Available: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-2020_en#what-was-horizon-2020. [Accessed: 13-Feb-2024].
Comisión Europea, “European Regional Development Fund - Regional Policy - European Commission,” WWW, 2019. [Online]. Available: https://ec.europa.eu/regional_policy/en/funding/erdf/. [Accessed: 04-May-2021].
National Science Foundation, “US NSF - About Funding,” National Science Foundation, 2020. [Online]. Available: https://www.nsf.gov/funding/aboutfunding.jsp. [Accessed: 16-Apr-2020].
M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551 – 129583, 2019.
A. Raza et al., “Impact of climate change on crops adaptation and strategies to tackle its outcome: A review,” Plants, vol. 8, no. 2, 2019.
J. Zhang and D. Tao, “Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things,” IEEE Internet Things J., vol. 8, no. 10, pp. 7789 – 7817, 2021.
R. R. Shamshiri et al., “Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture,” Int. J. Agric. Biol. Eng., vol. 11, no. 1, pp. 1 – 22, 2018.
G. S. Malhi, M. Kaur, and P. Kaushik, “Impact of climate change on agriculture and its mitigation strategies: A review,” Sustain., vol. 13, no. 3, pp. 1 – 21, 2021.
K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in agriculture: A review,” Sensors (Switzerland), vol. 18, no. 8, 2018.
L. Klerkx, E. Jakku, and P. Labarthe, “A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda,” NJAS - Wageningen J. Life Sci., vol. 90–91, 2019.
H. Shakhatreh et al., “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges,” IEEE Access, vol. 7, pp. 48572–48634, 2019.
M. A. Skylar-Scott, J. Mueller, C. W. Visser, and J. A. Lewis, “Voxelated soft matter via multimaterial multinozzle 3D printing,” Nature, vol. 575, no. 7782, pp. 330–335, 2019.
M. Weiss, F. Jacob, and G. Duveiller, “Remote sensing for agricultural applications: A meta-review,” Remote Sens. Environ., vol. 236, 2020.
J. C. Alonso and J. A. Carabalí, “Breve tutorial para visualizar y calcular métricas de Redes (grafos) en R (para Economistas),” vol. 7, no. April, 2019.
M. Ankrah Twumasi, Y. Jiang, D. Asante, B. Addai, S. Akuamoah-Boateng, and P. Fosu, “Internet use and farm households food and nutrition security nexus: The case of rural Ghana,” Technol. Soc., vol. 65, 2021.
R. Gupta, “Food security and safety using advanced information and communication technologies (ICTs),” 2016, vol. 04-05-Marc.
N. Khan, R. L. Ray, H. S. Kassem, and S. Zhang, “Mobile Internet Technology Adoption for Sustainable Agriculture: Evidence from Wheat Farmers,” Applied Sciences, vol. 12, no. 10. 2022.
M. Gallardo, A. Elia, and R. B. Thompson, “Decision support systems and models for aiding irrigation and nutrient management of vegetable crops,” Agric. Water Manag., vol. 240, p. 106209, 2020.
N. N. Thilakarathne, M. S. A. Bakar, P. E. Abas, and H. Yassin, “Towards making the fields talks: A real-time cloud enabled IoT crop management platform for smart agriculture,” Front. Plant Sci., vol. 13, 2023.
R. Chaganti, V. Varadarajan, V. S. Gorantla, T. R. Gadekallu, and V. Ravi, “Blockchain-Based Cloud-Enabled Security Monitoring Using Internet of Things in Smart Agriculture,” Future Internet, vol. 14, no. 9. 2022.
H. Kaur, A. K. Shukla, and H. Singh, “Review of IoT Technologies used in Agriculture,” in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022, pp. 1007–1011.
E. Collado, E. Valdéz, A. García González, and Y. Sáez, “Design and implementation of a low-cost IoT-based agroclimatic monitoring system for greenhouses,” AIMS Electron. Electr. Eng., vol. 5, pp. 251–283, Nov. 2021.
G. Si-Wen, M. A. Ikabl, and P. Kumar, “Smart agriculture and food storage system for asia continent: A step towards food security,” Int. J. Agric. Environ. Inf. Syst., vol. 12, no. 1, pp. 68–79, 2021.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Derechos de autor 2024 Tecnología Investigación y Academia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Reconocimiento – NoComercial – CompartirIgual (by-nc-sa): No se permite el uso comercial de la obra original, las obras derivadas deben circular con las mismas condiciones de esta licencia realizando la correcta atribución al autor.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional