Publicado:
2025-11-13Número:
Vol. 21 Núm. 2 (2024)Sección:
Investigación y DesarrolloEstimación De Potencia Activa De Sistemas Fotovoltaicos Considerando El Efecto Del Clipping Y Segmentación Horaria
Estimation of Active Power of Photovoltaic Systems Considering the Effect of Clipping and Time Segmentation
Palabras clave:
Sistemas fotovoltaicos, estimación de potencia, clipping, MPPT, regresión lineal, limpieza de datos, modelado físico, segmentación horaria, energía solar, eficiencia operativa (es).Palabras clave:
Photovoltaic systems, power estimation, clipping, MPPT, multiple linear regression, physical modeling, data cleaning, temporal segmentation, solar energy, operational efficiency (en).Descargas
Resumen (es)
La estimación precisa de la potencia de salida de inversores solares es esencial para optimizar la operación de sistemas de generación fotovoltaica. Sin embargo, los modelos tradicionales no consideran efectos operativos como el clipping (que ocurre cuando la potencia generada excede la capacidad nominal del inversor), lo que conduce a desviaciones en la estimación. Este estudio propone un enfoque de modelado que incorpora este efecto y emplea datos experimentales adquiridos cada 20 segundos de una instalación solar de 20 kW. Se utilizó un modelo de regresión lineal múltiple, considerando etapas de limpieza de datos y segmentación temporal. Los resultados muestran una mejora significativa en la precisión del modelo, especialmente al dividir los datos en periodos de mañana y tarde. Este trabajo sienta las bases para desarrollar aplicaciones futuras como el mantenimiento predictivo mediante la implementación de un gemelo digital de la instalación.
Resumen (en)
Accurate estimation of the output power of solar inverters is essential to optimize the operation of photovoltaic generation systems. However, traditional models do not account for operational effects such as clipping—occurring when the generated power exceeds the inverter’s nominal capacity—nor the voltage constraints imposed by the MPPT algorithm, leading to deviations in estimation. This study proposes a modeling approach that incorporates both effects and uses experimental data acquired every 20 seconds from a 20 kW solar installation. A multiple linear regression model was employed, including data cleaning and temporal segmentation steps. The results show a significant improvement in model accuracy, particularly when splitting the data into morning and afternoon periods. This work lays the groundwork for future applications such as predictive maintenance through the implementation of a digital twin of the installation.
Referencias
A. Shukla, A. Kumar, P. Jain, R. Bansal, and M. Gupta, "Advancements and challenges in solar photovoltaic technologies," Sustainable Energy Technologies and Assessments, vol. 61, p. 103969, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2667113124000342
R. Joshi, B. Sharma, S. Das, and A. Kumar, "A comprehensive review on solar photovoltaics," Solar Energy Advances, vol. 5, p. 100082, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2772737825000070
T. Ma, H. Yang, and L. Lu, "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, vol. 36, pp. 304–315, 2014.
M. Bakhtiari, A. Khodayar, R. Iravani, and M. H. Rehmani, "Quantifying the impact of inverter clipping on photovoltaic performance," Renewable Energy, vol. 215, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960148124003823
R. Sharma, V. Jain, and A. Singh, "Influence of high-resolution data on accurate curtailment loss estimation in photovoltaic systems," Applied Energy, vol. 370, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030626192401167X
M. G. Villalva, J. R. Gazoli, and E. R. Filho, "Comprehensive approach to modeling and simulation of photovoltaic arrays," IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198–1208, 2009. [Online].
Available: https://ieeexplore-ieee-org.udea.lookproxy.com/document/4806084
W. Xiao, F. F. Edwin, G. Spagnuolo, and J. Jatskevich, "Efficient approaches for modeling and simulating photovoltaic power systems," IEEE Journal of Photovoltaics, vol. 3, no. 1, pp. 500–508, 2013. [Online].
T. Ma, H. Yang, and L. Lu, "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, vol. 36, pp. 304–315, 2014. [Online].
Available: https://www.sciencedirect.com/science/article/abs/pii/S1364032114002950
C.-Y. Park et al., "Inverter efficiency analysis model based on solar power estimation using solar radiation," Processes, vol. 8, no. 10, p. 1225, 2020. [Online].
Available: https://www.mdpi.com/2227-9717/8/10/1225
A. Hashemi, S. Tabrizi, M. H. Nehrir, and M. Saadat, "A model-based algorithm for maximum power point tracking of PV systems," Solar Energy, vol. 155, pp. 670–680, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038092X17311362
F. Kumar, N. Singh, and R. Verma, "Enhanced MPPT approach for grid-integrated solar PV system," Materials Today: Proceedings, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S235248472400605X
K. Anderson and K. Perry, "Estimating subhourly inverter clipping loss from satellite-derived irradiance data," in Proc. IEEE 47th Photovoltaic Specialists Conf. (PVSC), Calgary, AB, Canada, Jun.–Aug. 2020. [Online]. Available: https://doi.org/10.1109/pvsc45281.2020.9300750
Canal Solar, "Cada inversor tiene sistema AFCI," 2025. [Online]. Available: https://canalsolar.com.br/es/Cada-inversor-tiene-sistema-AFCI/
D. C. S. Kumar, A. K. Behera, S. Dehuri, and A. Ghosh, "An outliers detection and elimination framework in classification task of data mining," Materials Today: Proceedings, vol. 33, pp. 3821–3827, 2020. [Online]. Available: https://doi.org/10.1016/j.matpr.2020.01.163
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Derechos de autor 2025 Revista Vínculos

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
2.png)
Este obra está bajo una licencia Creative Commons Atribución 4.0
