Modelos newtonianos y no newtonianos asociados al flujo sanguíneo: revisión

Newtonian and Non Newtonian Models Associated with Blood Flow: Review

  • Carolina Montaño
  • Nicolás Rodríguez
  • Luz Helena Camargo
Palabras clave: blood flow, hematocrit, newtonian fluid, non-newtonian fluid, viscosity. (en_US)
Palabras clave: fluido newtoniano, fluido no newtoniano, flujo sanguíneo, hematocrito, viscosidad. (es_ES)

Resumen (es_ES)

El comportamiento y características de la sangre en el sistema circulatorio han generado diversos modelos que pueden ser aplicados para el análisis del flujo sanguíneo, entre los que se incluyen modelos newtonianos y no newtonianos. En esta revisión se presentan once modelos propuestos a partir de parámetros experimentales que incluyen estudios de viscosidad con diferentes velocidades de cizallamiento y densidad asociada a la dinámica de fluidos. Se caracterizaron de acuerdo con métodos, parámetros específicos y valores experimentales utilizados; además, se comparó la eficacia, certeza y precisión de los modelos utilizados.

Resumen (en_US)

The behavior and characteristics of blood in the circulatory system have generated various models that can be applied to the flow analysis blood, including Newtonian and non-Newtonian models. This review presents eleven models proposed from experimental parameters, which include studies of viscosity with different speeds of shear and density associated with fluid dynamics. Were characterized in accordance with methods, specific parameters, used experimental values. Comparing efficiency, certainty and precision of the models used.

Descargas

La descarga de datos todavía no está disponible.

Referencias

G. Ortiz-León, D. Araya-Luna y M. Vílchez-Monge “Revisión de modelos teóricos de la dinámica de fluidos asociada al flujo de sangre A review of theoretical blood flow models”, Tecnología en marcha, vol. 27, n°. 1, pp. 66-76, 2014.

P. Evegren, J. Revstedt, y L. Fuchs, “Pulsating flow and mass transfer in an asymmetric system of bifurcations”, Comput Fluids, vol. 49, n°. 1, pp. 46–61, 2011. https://doi.org/10.1016/j.compfluid.2011.04.015

D. A. Robayo y C. A. Ortiz, “Introducción al uso del software Comsol Multiphysics”, tesis de ingenieria electrónica, Universidad distrital, Colombia, 2016.

D. Palmen, F. Gijsen, F. Van De Vosse y J. Janssen, “Diagnostic minor stenoses in carotid artery bifurcation models using the disturbed velocity field,” Journal of Vascular Investigation, vol. 3, n°. 1, 1997.

F. Ghalichi, X. Deng, A. De Champlain, Y. Douville, M. King y R. Guidoin, “Low Reynolds number turbulence modeling of blood flow in arterial stenoses,” Biorheology, vol. 35, n°. 4–5, pp. 281–294, 1998. https://doi.org/10.1016/S0006-355X(99)80011-0

F. J. H. Gijsen, F. N. Van De Vosse y J. D. Janssen, “The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model”, Journal of Biomechanics, vol. 32, n°. 6 pp. 601–608, 1999. https://doi.org/10.1016/S0021-

(99)00015-9

A. J. Apostolidis, A. P. Moyer y A. N. Beris, “Non-Newtonian effects in simulations of coronary arterial blood flow”, Journal of Non-newton Fluid Mechanics, vol. 233, pp. 155–165, 2016. https://doi.org/10.1016/j.jnnfm.2016.03.008

A. A. Saha y S. K. Mitra, “Modeling and Simulation of Microscale Flows”. [En línea]. Disponible en: https://www.intechopen.com/books/modelling_and_simulation/modeling_and_simulation_of_microscale_flows

M. C. Paul y M. M. Molla, “Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations”, Applied Mathematical Modelling, vol. 36, n°. 9, pp. 4393–4413, 2012. https://doi.org/10.1016/j.apm.2011.11.065

T. F. Sherman, “On Connecting Large Vessels to small. The Meaning of Murray´s Law”, The Journal of General Physiology, vol. 78, n°. 4, pp 431-453, 1981. https://doi.org/10.1085/jgp.78.4.431

I. Kokalari, T. Karaja, and M. Guerrisi, “Review on lumped parameter method for modeling the blood flow in systemic arteries,” J. Biomedical Science and Engineering, vol. 2013, January, pp. 92–99, 2013. https://doi.org/10.4236/jbise.2013.61012

F. J. H. Gijsen, E. Allanic, F. N. Van De Vosse y J. D. Janssen, “The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 903 curved tube”, Journal of Biomechanics, vol. 32, n°. 7, pp. 705–713, 1999. https://doi.org/10.1016/S0021-9290(99)00014-7

B. M. Johnston, P. R. Johnston, S. Corney y D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: Steady state simulations,” Journal of Biomechanics, vol. 37, n°. 5, pp. 709–720, 2004. https://doi.org/10.1016/j.jbiomech.2003.09.016

J. J. R. Fojas y R. L. De Leon, “Carotid Artery Modeling Using the Navier-Stokes Equations for an Incompressible, Newtonian and Axisymmetric Flow” APCBEE Procedia, vol. 7, n°. 63, pp. 86–92, 2013. https://doi.org/10.1016/j.apcbee.2013.08.017

F. J. H. Gijsen, F. N. Van De Vosse y J. D. Janssen, “The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model”, Journal of Biomechanics, vol. 32, n°. 6, pp. 601–608, 1999. https://doi.org/10.1016/S0021-

(99)00015-

Y. I. Cho y K. R. Kensey, “Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows”, Biorheology, vol. 28, pp. 241-262, 1991. https://doi.org/10.3233/BIR-1991-283-415

S. N. Doost, L. Zhong, B. Su y Y. S. Morsi, “The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle”, Computer Methods and Programs in Biomedicine, vol. 127, pp. 232–247, 2016. https://doi.org/10.1016/j.cmpb.2015.12.020

W. Wang, W. Cheng, K. Li, C. Lou, y J. Gong, “Flow Patterns Transition Law of Oil-Water Two-Phase Flow under a Wide Range of Oil Phase Viscosity Condition”, Journal of Applied Mathematics, vol. 2013, 2013.

J. A. Ritter, A. D. Ebner, K. D. Daniel y K. L. Stewart, “Application of high gradient magnetic separation principles to magnetic drug targeting”, Journal of Magnetism and Magnetic Materials, vol. 280, n°. 2–3, pp. 184–201, 2004. https://doi.org/10.1016/j.jmmm.2004.03.012

L. Goubergrits, E. Wellnhofer y U. Kertzscher, “Choice and Impact of a Non-Newtonian Blood Model for Wall Shear Stress Profiling of Coronary Arteries”, 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Riga, 2008. https://doi.org/10.1007/978-3-540-69367-3_30

A. Manuscript, “NIH Public Access”, Diabetes & Vascular Disease Research, vol. 15, n°. 6, pp. 398–405, 2006.

E. Sassaroli, K. C. P. Li y B. E. O. Neill, “Modeling of the impact of blood vessel flow on the temperature distribution during focused ultrasound exposure”, Excerpt from the Proceedings of the COMSOL Conference, Boston, 2010.

Cómo citar
Montaño, C., Rodríguez, N., & Camargo, L. H. (2018). Modelos newtonianos y no newtonianos asociados al flujo sanguíneo: revisión. Visión electrónica, 12(1), 115-123. https://doi.org/10.14483/22484728.13476
Publicado: 2018-06-08
Sección
Visión Actual