Publicado:

2022-03-17

Número:

Vol. 16 Núm. 1 (2022)

Sección:

Visión Investigadora

Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares

Utility and benefits of different exoskeletons for strokes diseases

Autores/as

Palabras clave:

Biomecánica, Exoesqueleto, Marcha, Patología neurológica, Rehabilitación, Robótica (es).

Palabras clave:

Biomechanics, Exoskeleton, Gait, Neurological disorders, Rehabilitation, Robotic (en).

Descargas

Resumen (es)

En este documento, se hace una revisión del estado de arte de los exoesqueletos con respecto a su utilidad y los beneficios que ofrecen a las personas que padecen de enfermedades cerebrovasculares o ACV (accidentes cerebrovasculares). Cabe aclarar que la revisión se llevó a cabo en la plataforma de base de datos Scopus con artículos publicados de los años 2000 al 2021, así mismo se aplicará un filtro de palabras que sean afines al tema de interés. Adicionalmente se expone si hay algún efecto contraproducente o perjuicio a la hora de usarlos y de igual manera se busca establecer cuál es el más favorable según los estudios que se realizan en cada artículo revisado. Finalmente se proponen sugerencias sobre lo que se puede llegar a mejorar para los exoesqueletos en el futuro.

Resumen (en)

This document reviews the state of the art of exoskeletons regarding their usefulness and the benefits they offer to people suffering from cerebrovascular diseases or CVA (cerebrovascular accidents). It should be clarified that the data of all the exoskeletons available to date are not available in this document, since the review was carried out in the Scopus database platform with articles published from the years 2000 to 2021, likewise a filter of words that are related to the topic of interest was added. Additionally, it is exposed if there is any counterproductive effect or damage when using them and in the same way it seeks to establish which is the most favorable according to the studies carried out in each article reviewed. Finally, suggestions are proposed on what can be improved for exoskeletons in the future.

Referencias

F. Temboury, J. De Los Santos, “Enfermedad Cerebrovascular”, 2011. [online]. Available: http://www.unge.gq/ftp/biblioteca%20digital/bvs/LIBRO%20URGENCIAS%20Y%20EMERGENCIAS

S. Hesse, C. Werner, “Poststroke motor dysfunction and spasticity: Novel pharmacological and physical treatment strategies”, CNS Drugs, vol. 7, no. 15, pp. 1093-1107, 2003. https://doi.org/10.2165/00023210-200317150-00004

F. Molteni, G. Gasperini, M. Gaffuri, M. Colombo, C. Giovanzana, C. Lorenzon, E. Guanziroli, “Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: Preliminary results”, European Journal of Physical and Rehabilitation Medicine, vol. 53, no. 5, pp. 676-684, 2017. https://doi.org/10.23736/S1973-9087.17.04591-9

M. Aach, R. C. Meindl, J. Germann, T. A. Schildhauer, M. Citak, O. Cruciger, “Exoskeletons for rehabilitation of patients with spinal cord injuries: Options and limitations”, Unfallchirurg, vol. 118, no. 2, pp. 130-137, 2015. https://doi.org/10.1007/s00113-014-2616-1

N. A. Kirsch, X. Bao, N. A. Alibeji, B. E. Dicianno, N. Sharma, “Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 1, pp. 224–232, 2018. https://doi.org/10.1109/TNSRE.2017.2756023

A. Ortlieb, M. Bouri, R. Baud, H. Bleuler, “An assistive lower limb exoskeleton for people with neurological gait disorders”, IEEE International Conference on Rehabilitation Robotics, pp. 441-446, 2017. https://doi.org/10.1109/ICORR.2017.8009287

P. Sale, M. Franceschini, A. Waldner, S. Hesse, “Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury”, European Journal of Physical and Rehabilitation Medicine, vol. 48, no. 1, pp. 111-121, 2012.

F. L. Haufe, K. Schmidt, J. E. Duarte, “Activity-based training with the Myosuit: a safety and feasibility study across diverse gait disorders”, J NeuroEngineering Rehabil, vol. 17, 2020. https://doi.org/10.1186/s12984-020-00765-4

T. Susko, K. Swaminathan, H. Krebs, “MIT-skywalker: A novel gait neurorehabilitation robot for stroke and cerebral palsy”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 10, pp. 1089-1099, 2016. https://doi.org/10.1109/TNSRE.2016.2533492

T. Morishita, T. Inoue, “Interactive bio-feedback therapy using hybrid assistive limbs for motor recovery after stroke: Current practice and future perspectives”, Neurologia Medico-Chirurgica, vol. 56, no. 10, pp. 605-612, 2016. https://doi.org/10.2176/nmc.st.2016-0094

J. Vaughan-Graham, D. Brooks, L. Rose, G. Nejat, J. Pons, K. Patterson, Exoskeleton use in post-stroke gait rehabilitation: a qualitative study of the perspectives of persons post-stroke and physiotherapists”, Journal of NeuroEngineering and Rehabilitation, vol. 17, no. 1, 2020. https://doi.org/10.1186/s12984-020-00750-x

J. Pransky, “The Pransky interview: Russ Angold, Co-Founder and President of Ekso™ Labs”, Industrial Robot: An International Journal, vol. 41, no. 4, pp. 329–334, 2014. https://doi.org/10.1108/IR-05-2014-0334

K. Kumar, D. Shanmugam, S. N. Min, M. Subramaniyam, “Assistive Technologies for Biologically Inspired Controller System - A Short Review Assistive Technologies for the Elderly”, Third International Conference on Inventive Systems and Control (ICISC), 2019. https://doi.org/10.1109/ICISC44355.2019.9036407

G. Zeilig, H. Weingarden, M. Zwecker, I. Dudkiewicz, A. Bloch, A. Esquenazi, “Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study”, The Journal of Spinal Cord Medicine, vol. 35, no. 2, pp. 96–101, 2012. https://doi.org/10.1179/2045772312Y.0000000003

K. Schmidt, J. E. Duarte, M. Grimmer, A. Sancho-Puchades, H. Wei, C. Easthope, R. Riener, “The myosuit: Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers”, Frontiers in neurorobotics, vol. 11, 2017. https://doi.org/10.3389/fnbot.2017.00057

T. Susko, K. Swaminathan, H. Krebs, “MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 10, pp. 1089–1099, 2016. https://doi.org/10.1109/TNSRE.2016.2533492

M. Sczesny-Kaiser, O. Höffken, M. Aach, O. Cruciger, D. Grasmücke, R. Meindl, M. Tegenthoff, “HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients”, Journal of NeuroEngineering and Rehabilitation, vol. 12, no. 1, 2015. https://doi.org/10.1186/s12984-015-0058-9

M. Bortole, A. Venkatakrishnan, F. Zhu, J. C. Moreno, G. E. Francisco, J. Pons, J. L. Contreras-Vidal, “The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study”, Journal of NeuroEngineering and Rehabilitation, vol. 12, no. 1, 2015. https://doi.org/10.1186/s12984-015-0048-y

M. R. Tucker, C. Shirota, O. Lambercy, J. S. Sulzer, R. Gassert, “Design and characterization of an exoskeleton for perturbing the knee during gait”, IEEE Transactions on Biomedical Engineering, vol. 64, no. 10, pp. 2331-2343, 2017. https://doi.org/10.1109/TBME.2017.2656130

J. M. Florez, M. Shah, E. M. Moraud, S. Wurth, L. Baud, J. Von Zitzewitz, J. Paik, “Rehabilitative soft exoskeleton for rodents”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 2, pp. 107-118, 2017. https://doi.org/10.1109/TNSRE.2016.2535352

K. Tan, S. Koyama, H. Sakurai, T. Teranishi, Y. Kanada, S. Tanabe, “Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review”, Journal of Orthopaedic Translation, vol. 28, pp. 55-64, 2021. https://doi.org/10.1016/j.jot.2021.01.001

S. Bhaumik, S. Ansari, R. Chattaraj, “Motion for lower limb exoskeleton based on predefined gait data”, International Conference on Intelligent Control, Power and Instrumentation, pp. 292-296, 2016. https://doi.org/10.1109/ICICPI.2016.7859720

P. Sale, E. F. Russo, M. Russo, S. Masiero, F. Piccione, R. Calabrò, S. Filoni, “Effects on mobility training and de-adaptations in subjects with spinal cord injury due to a wearable robot: A preliminary report”, BMC Neurology, vol. 16, no. 1, 2016, https://doi.org/10.1186/s12883-016-0536-0

A. M. Calderón-Bernal, R. Cano-De La Cuerda, M. Alguacil-Diego, F. Molina-Rueda, A. Cuesta-Gómez, J. C. Miangolarra-Page, “Robotic systems for gait rehabilitation in neurological disorders”, Rehabilitación, vol. 49, no. 3, pp. 177-192, 2015. https://doi.org/10.1016/j.rh.2014.11.003

S. G. Moctezuma Gutiérrez, A. Cruz Pazarán, R. Galicia Mejía, L. N. Oliva Moreno, “Desarrollo de plataforma para implementación de robots colaborativos”, Visión electrónica, vol. 12, no. 1, pp. 22–31, 2018. https://doi.org/10.14483/22484728.13308

K. Landines Jiménez, N. Nieves Pimiento, C. A. Toledo Bueno, "Simulation of forces applied to the human femur: Analysis of finite elements", Revista Vínculos, vol. 16, no. 1, pp. 73–81, 2019. https://doi.org/10.14483/2322939X.15575

Cómo citar

APA

Rodríguez-Beltrán , C. C. ., & Benavides-Cárdenas, D. A. . (2022). Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares. Visión electrónica, 16(1). Recuperado a partir de https://revistas.udistrital.edu.co/index.php/visele/article/view/18684

ACM

[1]
Rodríguez-Beltrán , C.C. y Benavides-Cárdenas, D.A. 2022. Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares. Visión electrónica. 16, 1 (mar. 2022).

ACS

(1)
Rodríguez-Beltrán , C. C. .; Benavides-Cárdenas, D. A. . Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares. Vis. Electron. 2022, 16.

ABNT

RODRÍGUEZ-BELTRÁN , C. C. .; BENAVIDES-CÁRDENAS, D. A. . Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares. Visión electrónica, [S. l.], v. 16, n. 1, 2022. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/18684. Acesso em: 7 dic. 2022.

Chicago

Rodríguez-Beltrán , Cristian Camilo, y Diego Andrés Benavides-Cárdenas. 2022. «Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares». Visión electrónica 16 (1). https://revistas.udistrital.edu.co/index.php/visele/article/view/18684.

Harvard

Rodríguez-Beltrán , C. C. . y Benavides-Cárdenas, D. A. . (2022) «Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares», Visión electrónica, 16(1). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/18684 (Accedido: 7diciembre2022).

IEEE

[1]
C. C. . Rodríguez-Beltrán y D. A. . Benavides-Cárdenas, «Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares», Vis. Electron., vol. 16, n.º 1, mar. 2022.

MLA

Rodríguez-Beltrán , C. C. ., y D. A. . Benavides-Cárdenas. «Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares». Visión electrónica, vol. 16, n.º 1, marzo de 2022, https://revistas.udistrital.edu.co/index.php/visele/article/view/18684.

Turabian

Rodríguez-Beltrán , Cristian Camilo, y Diego Andrés Benavides-Cárdenas. «Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares». Visión electrónica 16, no. 1 (marzo 17, 2022). Accedido diciembre 7, 2022. https://revistas.udistrital.edu.co/index.php/visele/article/view/18684.

Vancouver

1.
Rodríguez-Beltrán CC, Benavides-Cárdenas DA. Utilidad y beneficios de los exoesqueletos para las enfermedades cerebrovasculares. Vis. Electron. [Internet]. 17 de marzo de 2022 [citado 7 de diciembre de 2022];16(1). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/18684

Descargar cita

Visitas

11

Descargas

Los datos de descargas todavía no están disponibles.