Publicado:
2024-06-23Número:
Vol. 18 Núm. 1 (2024)Sección:
Visión InvestigadoraReliability assessment in complex systems using updated fault rate estimation
Evaluación de confiabilidad en sistemas complejos mediante la estimación actualizada de la tasa de fallas
Palabras clave:
Electrical systems, Estimation, Failure rate, Reliability, Time series (en).Palabras clave:
Confiabilidad, estimación, Series de tiempo, Sistemas eléctricos, Tasa de fallas (es).Descargas
Resumen (en)
The expansion and operation of the electrical network plays a significant role in ensuring service quality. Keeping the components operational requires an integrated, optimal and sustainable system focused on reliability analysis to ensure the efficiency and availability in complex systems. This paper explores a methodology to improve reliability analyses on power system components, using univariate data analysis and time series regression to develop an updated fault rate estimation. An exploratory data analysis is developed to understand the behavior and uncertain nature of the variables under study. The Simple Exponential Smoothing (SES) model and the Autoregressive Integrated Moving Average (ARIMA) are implemented to analyze and estimate the behavior of the failure rate of some electrical distribution transformers over time, where the variability of reliability is observed as the failure rate varies over time, due to external factors.
Resumen (es)
La expansión y operación de la red eléctrica trae consigo grandes retos para garantizar la calidad del servicio. Mantener operativos los activos requiere de un sistema integrado, óptimo y sostenible enfocado en los análisis de confiabilidad para asegurar la eficiencia y disponibilidad de los sistemas complejos. Este documento, basado en un enfoque analítico, explora cómo mejorar los análisis de confiabilidad en los componentes de los sistemas eléctricos de potencia, mediante el análisis de datos univariante, así como metodologías de regresión de series temporales para desarrollar una estimación actualizada de la tasa de fallas. Inicialmente, se desarrolla un análisis exploratorio de datos para comprender el Autoregressive Integrated Moving Average (ARIMA), suavizado exponencial simple (SES) se implementan para analizar y estimar el comportamiento de la tasa de fallas de algunos transformadores de distribución a lo largo del tiempo, donde se observa la variabilidad de la confiabilidad a medida que la tasa de fallas presenta variaciones en el tiempo, debido a factores externos.
Referencias
M. Mahdavi, M. S. Javadi, and J. P. S. Catalão, "Integrated generation-transmission expansion planning considering power system reliability and optimal maintenance activities," Int. J. Electr. Power Energy Syst., vol. 145, p. 108688, 2023. DOI: 10.1016/j.ijepes.2022.108688. [Online]. Available: https://doi.org/10.1016/j.ijepes.2022.108688
L. Ding, H. Wang, K. Kang, and K. Wang, "A novel method for SIL verification based on system degradation using reliability block diagram," Reliab. Eng. Syst. Saf., vol. 132, pp. 36-45, 2014. DOI: 10.1016/j.ress.2014.07.005. [Online]. Available: https://doi.org/10.1016/j.ress.2014.07.005
ISO,”ISO 55001:2014 Asset Management. Management systems – Requirements” The British Standards Institution, 2014.
B. Dhilon, Applied Reliability and Quality: Fundamentals, Methods, and Procedures, New Jersey, USA: Springer, 2007.
M. Firouzi, A. Samimi, and A. Salami, "Reliability evaluation of a composite power system in the presence of renewable generations," Reliab. Eng. Syst. Saf., vol. 222, 2022. DOI: 10.1016/j.ress.2022.108396. [Online]. Available: https://doi.org/10.1016/j.ress.2022.108396.
R. Yajun and M. Xiurui, "The reliability evaluation of the power system containing wind farm using the improved state space partition method," 2014 International Conference on Power System Technology, Chengdu, China, 2014, pp. 36-41, doi: 10.1109/POWERCON.2014.6993498.
S. Anbazhagan and N. Kumarappan, "Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT," Energy Convers. Manage., vol. 78, pp. 711-719, 2014. DOI: 10.1016/j.enconman.2013.11.031. [Online]. Available: https://doi.org/10.1016/j.enconman.2013.11.031.
X. Fan, X. Zhang, and X. B. Yu, "Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks," Reliab. Eng. Syst. Saf., vol. 236, p. 109088, 2023. DOI: 10.1016/j.ress.2023.109088. [Online]. Available: https://doi.org/10.1016/j.ress.2023.109088.
W. Qiu, Q. Tang, Z. Teng, W. Yao, and J. Qiu, "Failure rate prediction of electrical meters based on weighted hierarchical Bayesian," Measurement, vol. 142, pp. 21-29, 2019. DOI: 10.1016/j.measurement.2019.04.062. [Online]. Available: https://doi.org/10.1016/j.measurement.2019.04.062.
J. Stock, Introduction to Econometrics, Madrid, Spain: Pearson Educación S.A., pp. 373-411, 2012.
G. Box,Time Series Analysis Forecasting and Control, New Jersey, USA: John Wiley & Sons Ltd, pp. 2-43,2016.
S. Raschka, Machine Learning con PyTorch y Scikit-Learn, Madrid, España: Alphaeditorial, pp. 290-307, 2023.
Y. Chen, M. Ma, and Y. Zou, "Forecasting hourly electricity demand with nonparametric functional data analysis," Procedia Comput. Sci., vol. 214, pp. 428-436, 2022. DOI: 10.1016/j.procs.2022.11.195. [Online]. Available: https://doi.org/10.1016/j.procs.2022.11.195.
Ye Zhu, Shiwen Xie, Yongfang Xie, Xiaofang Chen, "Temperature prediction of aluminum reduction cell based on integration of dual attention LSTM for non-stationary sub-sequence and ARMA for stationary sub-sequences," Control Eng. Pract., vol. 138, p. 105567, 2023. DOI: 10.1016/j.conengprac.2023.105567. [Online]. Available: https://doi.org/10.1016/j.conengprac.2023.105567.
M. Rahimi y M. Rausand, "Failure rate prediction in various life cycle phases: A framework for updating," en 2012 IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong, China, 2012, pp. 762-766, DOI: 10.1109/IEEM.2012.6837842.
M. Tabesh, J. Soltani, R. Farmani, y D. Savic, "Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling," Journal of Hydroinformatics, vol.11, no.1, pp. 1-17, 2009, DOI: 10.2166/hydro.2009.008.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
atribución- no comercial 4.0 International