Publicado:
2024-04-20Número:
Vol. 18 Núm. 1 (2024)Sección:
Visión InvestigadoraSpiral Antenna for UWB RADAR on MF - HF
Antena Espiral de UWB para RADAR en bandas MF y HF
Palabras clave:
Antenna, Antenna array, Electromagnetic analysis, Ionosphere, Optimization, RADAR (en).Palabras clave:
Antena, Arreglos de Antenas, Ionosfera, Optimización, RADAR (es).Descargas
Resumen (en)
The ionospheric layer's height and density are measured by the reflected and captured RADAR signals. A vertical incidence pulsed ionospheric RADAR (VIPIR) operates from 1 MHz to 20 MHz. Due to the characteristics of power and directivity, the VIPIR transmitting antennas currently used are large and require up to 30 m height for installation, which is expensive and requires complex assemblies due to their technical complements such as towers, ground systems, and lightning rods. The VIPIR UD system is an ionosonde design with the RADAR signal transmission antenna to be installed near the ground level to reduce investment and complements. The design of the antenna array is assumed from the requirements of frequency range, location, gain, power management, and directivity, a spiral dipole design with a ground plane above the ground is selected, for the analysis of the antenna array on MATLAB, and the optimization process was made with the Antenna Toolbox with the SADEA optimization tool. The results show that the proposed system works according to the requirements, exceeding the directivity by up to 6 dBi in 90% of the target band and 9 dBi on some ranges, resulting in a design that facilitates the assembly of the radar with less structure and height resulting in the reduction of the assembly, operation and subsequent maintenance budget.
Resumen (es)
La altura y la densidad de las capas ionosféricas se miden mediante señales de radar reflejadas y capturadas. Un RADAR ionosférico pulsado de incidencia vertical (VIPIR) opera desde 1 MHz hasta 20 MHz. Debido a las características de potencia y directividad, las antenas transmisoras VIPIR que se utilizan actualmente son grandes y requieren una instalación elevada de hasta 30 m, lo cual es costoso y requiere montajes complejos debido a sus complementos técnicos como torres, sistemas de tierra y pararrayos. El sistema VIPIR UD es un diseño de ionosonda con la antena de transmisión de señal RADAR que se instalará cerca del nivel del suelo para reducir la inversión y los complementos. El diseño del conjunto de antenas se asume a partir de los requisitos de rango de frecuencia, ubicación, ganancia, administración de potencia y directividad, se escogió un diseño de dipolo en espiral con un plano de tierra sobre el suelo, para el análisis del conjunto de antenas se usa MATLAB, y el proceso de optimización se realizó con el Antenna Toolbox y con la herramienta de optimización “Surrogate Assisted Differential Evolution Algorithm” (SADEA). Los resultados muestran que el sistema propuesto funciona de acuerdo con los requerimientos superando la directividad hasta en 6 dBi en el 90% de la banda objetivo y 9 dBi en algunos rangos, dando como resultado un diseño que facilita el montaje del radar con menor estructura y altura, además de la reducción del presupuesto de montaje, operación y posterior mantenimiento.
Referencias
T. Bullett, R. Livingston, R. Grubb, N. Zabotin, "High Frequency Radars and Ionospheric Sounding with VIPIR”, 2020. http://lisn.igp.gob.pe/files/first_ionosonde_school/bullet_HF_sounding.pdf
T. Bullett, "Dynasonde and VIPIR Ionosonde Field Site Requirements Basic and Research Capabilities", 2018. ftp://ftp.ngdc.noaa.gov/ionosonde/documentation/VIPIR/VIPIR_Site_Needs-Sep18.pdf
T. R. Robinson, "Some analytical results for the propagation and spreading of short electromagnetic pulses in the ionosphere," in IEE Colloquium on Antenna and Propagation Problems of Ultrawideband Radar, pp. 10/1-10/5, 1993.
C. Wang, M. Zhang, Z. Xu, and C. Chen, "Simulation of ionospheric effects on SAR imaging with noise at P-band," in ISAPE2012, 2012, pp. 419-422. https://doi.org/10.1109/ISAPE.2012.6408795
E. Zuccheretti, "Ionospheric radars development," 2010. https://www.earth-prints.org/bitstream/2122/6958/1/Posgrado.pdf
T. W. Bullett, N. A. Zabotin, R. C. Livingston, R. N. Grubb, J. E. Mabie, and C. Negrea, "HF radar measurements of the ionosphere using dynasonde methods", in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 2014. https://doi.org/10.1109/URSIGASS.2014.6929845
J. Talukdar, B. Mehta, K. Aggrawal, and M. Kamani, "Implementation of SNR estimation based energy detection on USRP and GNU radio for cognitive radio networks," in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2017, pp. 304-308. https://doi.org/10.1109/WiSPNET.2017.8299767
M. Floer, "Design and Implementation of a Software Defined Ionosonde”, 2020. https://munin.uit.no/handle/10037/19423
B. Isham, "An MF/HF antenna array for ionospheric sounding and measurement of ionospheric radio emissions," in 2013 US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 2013. https://doi.org/10.1109/USNC-URSI-NRSM.2013.6525062
O. Koloskov, A. Kashcheyev, O. Bogomaz, A. Sopin, B. Gavrylyuk, and A. Zalizovski, "Performance Analysis of a Portable Low-Cost SDR-Based Ionosonde," Atmosphere (Basel), vol. 14, no. 1, p. 159, Jan. 2023. https://doi.org/10.3390/atmos14010159
Q. Bai, "Analysis of the particle swarm optimization algorithm”, Computer and Information Science, vol. 3, no. 1, 2010. https://doi.org/10.5539/cis.v3n1p180
P. Rocca, G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas Propag Mag, vol. 53, no. 1, 2011. https://doi.org/10.1109/MAP.2011.5773566
A. Hoorfar, "Evolutionary programming in electromagnetic optimization: A review”, IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, 2007. https://doi.org/10.1109/TAP.2007.891306
M. John, M. J. Ammann, "Antenna optimization with a computationally efficient multiobjective evolutionary algorithm," IEEE Trans Antennas Propag, vol. 57, no. 1, 2009. https://doi.org/10.1109/TAP.2008.2009775
B. Liu, A. Irvine, M. O. Akinsolu, O. Arabi, V. Grout, and N. Ali, "GUI design exploration software for microwave antennas," J Comput Des Eng, vol. 4, no. 4, 2017. https://doi.org/10.1016/j.jcde.2017.04.001
M. Stein, "Large sample properties of simulations using latin hypercube sampling," Technometrics, vol. 29, no. 2, 1987. https://doi.org/10.1080/00401706.1987.10488205
B. Liu, H. Aliakbarian, Z. Ma, G. A. Vandenbosch, G. Gielen, "An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques," IEEE Trans Antennas Propag, vol. 62, no. 1, 2014. https://doi.org/10.1109/TAP.2013.2283605
Z. Ma, G. A. Vandenbosch, "Low-cost wideband microstrip arrays with high aperture efficiency," IEEE Trans Antennas Propag, vol. 60, no. 6, 2012. https://doi.org/10.1109/TAP.2012.2194685
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
atribución- no comercial 4.0 International