Algoritmos bioinspirados en la planeación off-line de trayectorias de robots seriales

Bio-inspired algorithms in serial-robot path off-line planning

  • Maria A. Guzman
  • Cristian Peña
Palabras clave: Path planning, bioinspired algorithms, serial robot, inverse kinematics (en_US)
Palabras clave: Planeación de trayectorias off-line, robot serial, cinemática inversa, algoritmos bioinspirados (es_ES)

Resumen (es_ES)

El objetivo de la planeación off-line de trayectorias en robótica serial consiste en dar al efector final del robot las trayectorias necesarias para desplazarse en su espacio de trabajo y ejecutar diferentes tareas mediante un ambiente virtual en el que se simula tanto el robot como el entorno del que hace parte. En este artículo se presenta una revisión de las técnicas tradicionalmente usadas en el desarrollo y optimización de la planeación de trayectorias off-line en robots seriales. Se resaltan las bondades y carácter multidisciplinar de los algoritmos bioinspirados gracias a su uso como herramienta de búsqueda y optimización en problemas de diferentes áreas del conocimiento. Por último, son expuestas las principales aplicaciones en planeación de trayectorias off-line en las que los algoritmos bioinspirados han contribuido como alternativa para la búsqueda y optimización de soluciones en trayectorias de robots seriales.

Resumen (en_US)

The main purpose of off-line path planning in serial robotics is to give the robot’s endeffector the needed path so it can move along its own workspace and accomplish different assigned tasks through a virtual environment where the robot and its own context (obstacles, machines, etc) is simulated. In this paper, a review of the techniques traditionally used in the development and optimization of off-line path planning optimization for serial robots is presented. The paper highlights the goodness and the multidisciplinary character of the bio-inspired algorithms, which stems from their use as a search and optimization tool for problem solving in different knowledge areas. Finally, the main applications in off-line path planning are explained together with its bio-inspired algorithms, which have made contributions as an alternative for both the search and optimization of solutions in serial robot path planning.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Maria A. Guzman

Ingeniera Mecánica, 

Msc. Automatización industrial Universidad Nacional de Colombia,

PhD. Ingeniería Mecánica Universidad de Sao Paulo (Brasil).

Cristian Peña

Ingeniero de Diseño y Automatización Electrónica Universidad de La Salle (Colombia),

Estudiante de Maestría en Ingeniería Mecánica Universidad

Nacional de Colombia. 

Referencias

J. Barrientos et al., Fundamentos de Robótica. Madrid: Universidad Politécnica de Madrid, 1996.

J. González, “Control bilateral con retroalimentación de esfuerzos aplicado a la cirugía cardiaca”, Tesis de Doctorado en Computación Avanzada para Ciencias e Ingenierías. Universidad Politécnica de Madrid, España, 2004.

Z. Pan, et al., “Recent progress on programming methods for industrial robots”, Robotics and Computer-Integrated Manufacturing, vol. 28, n.º 1, pp. 87-94, 2012.

E. Masehian, D. Sedighizadeh, “Classic and heuristic approaches in robot motion planning, a chronological review”, World Academy of Science, Engineering and Technology, vol. 29, n.º 1, pp. 101-106, 2007.

H. Choset, et al., Principles of robot motion: theory, algorithms and implementation. Cambridge: Massachusetts Institute of Technology MIT, 2005.

J. Bañón, et al., “Sobre algoritmos de planificación del movimiento de robots”, Ingeniería y Competitividad, vol. 2, n.º 2, pp. 18-25, 2000.

J. Goldman, “Path planning problems and solutions”, in Aerospace and Electronic Conference. NAECON. Proceedings of the IEEE 1994 National, Dayton, Ohio, 1994.

G. Huang, “Inverse kinematics analysis trajectory planning for a robot arm”, in Asian Control Conference ASCC. Kaohsiung, Taiwán, 2011.

S. Yahya, et al., “A geometrical motion planning approach for redundant plannar manipulators”, Australian Journal of Basic and Applied Sciences, vol. 3, n.º 4, pp. 3757-3770, 2009.

C. Atkeson, J. McIntyre, “Robot trayectory learning through practice”, in International Conference on Robotics and Automation. IEEE. Proceedings of the IEEE International, 1986.

A. Gasparetto, V. Zanotto, “Optimal Trajectory Planning for Industrial Robots”, Advances in Engieering Software journal, vol. 41, n.º 1, pp. 548- 556, 2009.

J. Craig, Introduction to robotics: mechanicsand control. London: Addison Wesley Longman, 1986.

G. Bessonnet, J. Lallemand, “Optimal trajectories of robot arms minimizing constrained actuators and traveling time”, in International Conference on Robotics and Automation. IEEE. Proceedings of the IEEE International. Cincinnati, Ohio, 1990.

A. Ismael, “Robot trajectory planning with semi-infinite programming”, European Journal of Operational Research, vol. 153, n.º 1, pp. 607-617, 2009.

L. Zhenyu, “Motion navigation for arc welding robots based on feature mapping in a simulation enviroment”, Robotic And Computer-Integrated Manufacturing Journal, vol. 26, n.º 1, pp. 137-144, 2009.

R. Mayorga, A. Wong, “A singularities avoidance method for the trajectory planning of redundant and nonredundant robot manipulators”, in International Conference on Robotics and Automation. IEEE. Proceedings of the IEEE International. Piscataway, New Jersey, 1987.

G. Sahar, J. Hollerbach, “Planning of minimum-time trajectories for robot arms”, in International Conference on Robotics and Automation. IEEE. Proceedings of the IEEE International. Edinburgh, Scotland, 1985.

C. Chevallereau, “Feasible trajectories for non redundant robot at a singularity”, in International Conference on Robotics and Automation. IEEE. Minnesota, 1996.

D. Leng, M. Chen, “Robot trajectory planning using simulation”, Robotics & Computer-Integrated Manufacturing Journal, vol. 13, n.º 2, pp. 121-129, 1997.

C. Lin, “Motion plannning of redundant robots by perturbation method”, Mechatronics Journal, vol. 14, n.º 3, pp. 237-339, 2004.

Z. Yao, K. Gupta, “Path planning with general end-effector constrains”, Robotics And Autonomous Systems, vol. 55, n.º 1, pp. 316-327, 2007.

A. De Luca, G, Oriolo, “Motion Planning and Trajectory Control of an Underactuated Three-Link Robot Via Dynamic Feedback Linearization”, in International Conference on Robotics and Automation. IEEE. San Francisco, California, 2000.

Q, Zhao, Z, Sun. “Image-based Robot Motion Simulation”, Optics Communications Journal, vol. 205, n.º 1, pp. 257-263, 2002.

T. Kunz, et al., “Time path planning for a robot arm in changing enviroments”, in International Conference on Intelligent Robots and Systems. IEEE. Taipei, 2010.

K. Harada, “Pick and place planning for dual-arm manipulators”, in International Conference on Robotics and Automation. IEEE. Minnesota, 2012.

Y. Shin, Z. Bien, “A novel method ofcollision-free trajectory planning for two robot arms”, in International Conference on Systems, Man, and Cybernetics. IEEE. Seul, 1988.

R. Zurawski, S. Phang, “Path planning for robot arms operating in a common workspace”, in International Conference on Industrial Electronics, Control, Instrumentation and Automation. IEEE. San Diego, 1992.

X. Cheng. “On-line collision-free path planning for service and assembly tasks by a two-arm robot”, in International Conference on Robotics and Automation. IEEE. Nagoya, 1995.

T. Tsuji, et al., “Distributed trajectory generation for coopertive multi-arm robots via virtual force interactions”, IEEE transactions on systems, man, and cybernetics Journal, vol. 27, n.º 5, pp. 862-867, 1997.

J. Wunderlich, “Simulating a robotic arm in a box: redundant kinematics, path planning, and rapid prototyping for enclosed spaces”, Simulation: Journal of Society for Computer Simulation, vol. 80, n.º 6, pp. 301-316, 2004.

X. Zha, X. Chen, “Trajectory coordination planning and control for robot manipulators in automated material handling and procesing”, International Journal of Advanced Manufacturing Technology, vol. 23, n.º 2, 831-845, 2004.

S. Mitsi, et al., “Off-line programming of an industrial robot for manufacturing”, International Journal of Advanced Manufacturing Technology, vol. 26, n.º 5, pp. 262-267, 2005.

S. Larsson, J. Kjellander, “Path planning for laser scanning with an industrial robot”, Robotics and Autonomous Systems, vol. 56, n.º 1, pp. 615-624, 2007.

T. García, R. Ávila, “Planeación asistida por computadora del proceso tecnológico de ensamble”, Revista de Ingeniería Mecánica Instituto Superior Politécnico, vol. 11, n.º 1, pp. 1-7, 2008.

J. Xiaoshu, Y. Xichen, “Off-line programming of a robot for laser re-manufacturing”, Tsinghua Science and Technology Journal, vol. 14, n.º 1, pp. 186-191, 2009.

T. Bäck, et al., “A survey of evolution strategies”, Proceedings of the Fourth International Conference on Genetic Algorithms. Dortmund: Morgan Kaufmann, vol. 1, pp. 2-9, 1991.

C. Alonso, et al., “Model selection in genetic programming”, in Proceedings of the 12th annual conference on genetic and evolutionary computation. ACM. New York, Estados Unidos, 2011.

A. Konak, et al., “Multi-objetive optimization using genetic algorithms: a tutorial”, Realiability Engineering and System Safety Journal, vol. 91, n.º 9, pp. 992-1007, 2006.

X. Basogain, Redes neuronales artificiales y sus aplicaciones. Dpto. Ingeniería de Sistemas y Automática, Escuela Superior de Ingeniería Bilbao. Open Course Ware. [En línea] disponible en http://ocw. ehu.es/ ensenanzas-tecnicas/redes neuronales-artificiales-y-sus- aplicaciones /Course_listing. [Consultada 20-09 2012].

X. Jing, “Robust adaptative learning of feedforward neural networks via LMI optimizations”, Neural Networks Journal, vol. 31 n.º 1, pp. 33-45, 2012.

C. Castañeda, P. Equivel, “Decentralized neural identifier and control for nonlinear systems base don extended kalman filter”, Neural Networks Journal, vol. 31, n.º 1, pp. 81-87, 2012.

E. Alkim, et al., “A fast and adaptative automated disease diagnosis method with an innovate neural network”, Model, vol. 33, n.º 1, pp. 88-96, 2012.

D. Whitley, “A genetic algorithm tutorial”, Statistics and Computing Journal, vol. 4, n.º 1, pp. 65-85, 1994.

J. Álvarez, Introducción a los algoritmos genéticos: introducción a los algoritmos evolutivos. Madrid: Universidad Politécnica de Madrid, 2012.

E. Zitzler, Evolutionary algorithms for multiobjetive optimization: methods and applications. Alemania: Institut für Technishe Informatik und Kommunukationsnetze, 1999.

F. Wang, et al., “Genetic algorithms with a new repair operator for assembly job shop scheduling”, International Journal of Industrial Engineering, vol. 18, n.º 7, pp. 377-385, 2010.

B. Tandon, R. Kaur, “Genetic algorithm based parameter tunning of pid controller for composition control system”, International Journal Of Engineering Science and Technology, vol. 1, n.º 1, pp. 6705-6711, 2011.

C. Reeves, C. Wright, “Genetic algorithms and statistical methods: a comparison”, in International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. Galesia. Sheffield, 1995.

R. Ebehart, Y. Shi, “Particle swarm optmization: developements, applications and resources”, in Conference on Evolutionary Computation. IEEE. Seúl, 2001.

C. Grosan, et al., Swarm intelligence in data mining. 1ed. London: Springer, 2006.

M. Fleischer, “Foundations of swarm intelligence: from principles to practice”, in Conference on Swarming: Network Enabled, C4ISIR. Virginia, Estados Unidos, 2005.

F. Chan, M. Tiwari, Swarm intelligence: focus on ant and particle swarm optimization. Croacia: I-Tech Education and Publishing, 2007.

M. Vásquez, 1994 “Recocido simulado: un nuevo algoritmo para optimación de estructuras”, Tesis de Doctorado en Arquitectura. Universidad Politécnica de Madrid, España, 2007.

A. Mallahzadeh, et al., “Application of the invasive weed optimization technique for antenna configurations”, Progress in Electromagnetics Research, vol. 79, n.º 1, pp. 137-150, 2008.

M. Guzmán, “A novel multiobjetive optimization algorithm based on bacterial chemotaxis”, Engineering Applications of Artificial Intelligence Journal, vol. 23, n.º 3, pp. 292-301.

W. Yun, Y. Xi, “Optimum motion planning in joint space for robots using genetic algorithms”, Robotics and Autonomous Systems Journal, vol. 18, n.º 4, pp. 373 393, 1996.

Z. Abo-Hammour, et al., “Cartesian path generation of robot manipulators using continuos genetic algorithms”, Robotics and Autonomous Systems Journal, vol. 41, n.º 4, pp. 179-223, 2002.

S. Ramabalan, et al., “Multi-objetive dynamic optimal trajectory planning of robot manipulators in the presence of obstacles”, International Journal of Advances in Manufacturing Technology, vol. 41, n.º 5, pp. 580-594, 2008.

S. Klane, et al., “Dynamic path planning for a 7-DOF robot arm”, in International Conference on Intelligence Robots and Systems. IEEE. Beijín, 2006.

A. Sengupta, et al., “Energy efficient trajectory planning by a robot arm using invasive weed optimization technique”, in Third World Congress on Nature and Biologically Inspired Computing. NaBic. Salamanca, 2011.

H. Xu, et al., “Global time-energy optimal planning of robot trajectories”, in International Conference on Mechanics and Automation. IEEE. Changchun, 2009.

N. Kubota, et al., “Hierarchical trajectory planning of redundant manipulators with structured intelligence”, Advanced Robotics Journal, vol. 12, n.º 3, pp. 209-225, 1998.

W. Xu, et al., “Study on non-holonomic cartesian path planning of free-floating space robotic system”, Advanced Robotics Journal, vol. 23, n.º 1-2, pp. 113-143, 2009.

Cómo citar
Guzman, M. A., & Peña, C. (2013). Algoritmos bioinspirados en la planeación off-line de trayectorias de robots seriales. Visión electrónica, 7(1), 27-39. https://doi.org/10.14483/22484728.4390
Publicado: 2013-09-01
Sección
Visión Investigadora