DOI:
https://doi.org/10.14483/22484728.793Publicado:
2008-12-04Número:
Vol. 2 Núm. 2 (2008)Sección:
Visión InvestigadoraControl difuso adaptativo aplicado a un control de velocidad
Adaptative Fuzzy Control Applied To A Speed Control
Palabras clave:
Diffuse control, FRMLC, DFL, systems LVT. (en).Palabras clave:
Control difuso, FRMLC, DFL, sistemas LVT. (es).Resumen (es)
En este artículo se da a conocer la técnica de control adaptativo FRMLC, aplicada a controles difusos con el fin de ajustar su base de reglas de forma que un sistema se comporte de acuerdo a un modelo de referencia. Esta técnica es aplicada al control de velocidad de un automóvil, el cual esta sujeto a perturbaciones que afectan su dinámica.Resumen (en)
In this article is given to know the technique of adaptive control FRMLC which is applied to diffuse controllers in order to adjust its base of rules so that the system behaves according to a refernce model. This technique is applied to the control of speed of an automobile, which is subject to interferences that affect its dynamics.Referencias
Antskils, P; Passino, K; An Introduction to Intelligent and Autonomous Control, Kluwer Academic Publisher; 1993.
Dandone P.; Design Optimization of Fuzzy Logic Systems; Virginia Polytechnic Institute and State University, 2001.
Passino, K; Yurkovich, S. Fuzzy Control. Addison-Wesley. 1998.
Fuzzy Logic Toolbox for Use with Matlab, The Mathworks, 2006.
Haley, P; Soloway D; Gold, B; Real-time Adaptive Control Using Neural Generalized Predictive Control, NASA Langley Research Center, p 4272-4278.
Jeffey, R, Fuzzy Reference Model Learning Control, Ohio State University.
Jeffey, R; Fuzzy Learning Control to Antiskid Braking System, IEEE transactions on control, 1993.
Kandel, A; Fuzzy Control Systems, Crc press, 1993.
Kazuo, Tanaka; Fuzzy Control System Design and Analysis. Ed. John Wiley and sons, 2001.
Li-Xing W., Stable Adaptive FüzzyA Control of Nonlinear Systems, IEEE Transaction Systems on Fuzzy Control, Vol 1, -199a.
Mcfarland, M; Robust Adaptive Control of Uncertain Nonlinear Systems Using Neural Networks, IEEE paper, Automatic- Control, 1997.
Mendel, J.; Fuzzy Logic System for Engineering, Proceeling of the IEEE, Vol. 83, No. 3, 1995.
Quesada, A; Robust Adaptive Control with Multiple Estimation Models for Stabilization of a Class of Non-inversely stable-Time-varying Plants.
Rodríguez, C; Bailén, J;_Diserio e Impleinritáción dé un Coritrolacior. Difuso Autosintonizado sobre Microcontroladores, Aplicado al Control del Péndulo Invertido. 2003.
Spiegelhalter, M; Machine Learning Neural and Statistical Classification; University of Strachclide.
Spooner, J; Passino K. Stable Adaptative' Control and Estimation for Nonlinear Sysem, Neural and Fuzzy Approkimator Techniques, Addison Wesley, 2002.
Wahión A., Passino K.; Dyna.mically Fociised Fúzzy. Learning Control; IEEE. 'Transactions on System Man and Cybernetics Vol 26, 1996.
Zadeh 14,, The Bírth and Eolution of Fuzzy yLogic Computer Science Division of the Departznent of Electricál Engineering .and Computer Science,- _and_ the Electronics Research Laboratory, Uníversity-of Cal furnia, Berkeley, California USA,1990.