Simulación numérica CFD de la estructura de control y del sistema de compuertas radiales - represa El Quimbo

CFD Numerical Simulation of the Control Structure and the Radial Gate System - El Quimbo Dam

  • Edgar Orlando Ladino Moreno Universidad Militar Nueva Granada
  • Germán Ricardo Santos Granados Escuela Colombiana de Ingeniería Julio Garavito
  • César Augusto García-Ubaque Universidad Distrital Francisco José de Caldas
Palabras clave: automatic control, reservoir, hydrodynamics, hydrology, simulation model (en_US)
Palabras clave: control automático, embalse, hidrodinámica, hidrología, modelo de simulación (es_ES)

Resumen (es_ES)

Contexto: Describir matemáticamente el comportamiento hidráulico en estructuras de control conlleva a ecuaciones diferenciales acopladas no lineales, las cuales no cuentan con solución analítica en la mayoría de los problemas de ingeniería. No obstante, es posible obtener soluciones aproximadas a partir del método de volúmenes finitos (FVM). Este método convierte un medio continuo con variables infinitas en un medio discreto con geometrías establecidas y condiciones de contorno determinadas.

Método: Se desarrolló un modelo numérico en 2D sin considerar el efecto de las pilas y los estribos en el azud, a escala 1:70, bajo condiciones de flujo permanente de la estructura de control y del sistema de compuertas radiales de la represa El Quimbo, a partir de la implementación el software Ansys Fluent 17.0. El análisis hidrodinámico de la estructura se realizó bajo condiciones de superficie libre y con diferentes cargas hidráulicas, para aperturas de 704 msnm, 706,9 msnm, 709,4 msnm, 712 msnm y 724,6 msnm Posteriormente, se validó el modelo numérico a partir de la comparación de los resultados numéricos con los datos teóricos realizados por Ingetec y los datos de las pruebas realizadas en el modelo físico desarrollado por la Universidad Nacional de Colombia (sede Manizales).

Resultados: Para un periodo de retorno de 100 años, el modelo numérico estimó una lámina de 0,0306 m que corresponden a 2,143 m en la estructura El Quimbo. Con esta disposición, ingresó al volumen de control un total de 80,7996 L/s y salieron 80,7324 L/s, originando una variación de caudal de 0,08316 %. La mayor variación de lámina de agua del modelo numérico con respecto a la lámina observada es de 3,1 % (0,258 m), la cual corresponde a la creciente máxima probable para una apertura de compuertas con cota (724,6 msnm) y con una descarga de 290 L/s. De igual forma, las mayores velocidades desarrolladas por el flujo en el vertedero se originan en la salida del deflector, correspondiente a la abscisa K0+ 5,19 m. Según el modelo numérico, se determinó que el impacto del chorro en el canal se hace con una velocidad máxima de 6,15 m/s.

Conclusiones: La relación entre la carga hidráulica con respecto a la carga de diseño no debe superar 1,33, lo cual a su vez concuerda con lo recomendado por la USBR. Asimismo, la condición de cavitación encontrada en la rápida puede ser considerada cavitación incipiente. En el diseño de vertederos, la relación H/HD incide de manera directa en la aparición de fenómenos de cavitación sobre la estructura, en el desarrollo de altas velocidades en la rápida, en el deflector y en la capacidad de descarga del vertedero.

Resumen (en_US)

Context: Describing mathematically the hydraulic behavior in control structures leads to nonlinear coupled differential equations, which do not have analytical solution in the majority of engineering problems. However, it is possible to obtain approximate solutions from the finite volume method (FVM). This method converts a continuous medium with infinite variables into a discrete medium with established geometries and certain boundary conditions.

Methods: Using the Ansys Fluent 17.0 software, a 1:70 scale 2D numerical model was developed without considering the effect of stacks and abutments on the weir under permanent flow conditions of the control structure and the radial gate system of the El Quimbo dam. The hydrodynamic analysis of the structure was carried out under free surface conditions and with different hydraulic loads, for openings of 704 meters above sea level, 706.9 meters above sea level, 709.4 meters above sea level, 712 meters above sea level and 724.6 meters above sea level. Subsequently, the numerical model was validated based on the comparison between the numerical results and the theoretical data made by both Ingetec and the tests in the physical model developed by the National University of Colombia in Manizales.

Results: For a return period of 100 years, the numerical model estimated a sheet of 0.0306 m corresponding to 2,143 m in the El Quimbo structure. With this arrangement, 80.7996 Liters per second entered the control volume and 80.7324 Liters per second left, giving rise to a variation of 0.08316%. The largest water sheet variation of the numerical model with respect to the observed sheet is 3.1% (0.258 m), which corresponds to the increasing probable maximum for an opening of gates with elevation (724.6 m) and with a discharge of 290 L/s. Similarly, the higher speeds developed by the flow in the landfill originate at the exit of the deflector, corresponding to the abscissa K0 + 5,19 m. According to the numerical model, it was determined that the impact of the jet in the channel is made with a maximum speed of 6.15 m/s.

Conclusions: The relation between the hydraulic load with respect to the design load must not exceed 1.33, which agrees with that recommended by the USBR. Also, the cavitation condition found in the fast can be considered incipient cavitation. In landfill design, the H/HD ratio directly affects the appearance of cavitation phenomena on the structure, the development of high velocities in the fast, the deflector, and the discharge capacity of the landfill.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Edgar Orlando Ladino Moreno, Universidad Militar Nueva Granada

Ingeniero civil, magíster en Ingeniería Civil. Profesor asociado, Facultad de Ingeniería, Universidad Militar Nueva Granada. Bogotá

Germán Ricardo Santos Granados, Escuela Colombiana de Ingeniería Julio Garavito

Ingeniero Civil, doctor en Ingeniería. Director de posgrados, Escuela Colombiana de Ingeniería Julio Garavito. Bogotá

César Augusto García-Ubaque, Universidad Distrital Francisco José de Caldas

Ingeniero Civil, doctor en Ingeniería. Profesor Titular, Facultad Tecnológica, Universidad Distrital Francisco José de Caldas. Bogotá

Referencias

ANSYS (2013). ANSYS CFX Introduction. Canonsburg: ANSYS Inc.

Chadwick, A. y Morfett, J. (1989). Hydraulics in Civil Engineering. Londres: Allen & Unwin.

Chow, V. (1994). Hidráulica de canales abiertos. Bogotá: McGraw-Hill.

Daneshkhah, A. y Vosoughifar, H. (2011). Numerical investigation of passed flow different parameters over a standard Ogee Spillway to satisfy flow profile in CFD Method. En 5th Symposium on Advances in Science & Technology. Khavaran Higer-Education Institute. 12-17 de mayo. Mashhad, Irán.

Dehdar-behbahani, S. y Parsaie, A. (2016). Numerical modeling of flow pattern in dam spilway's guide wall. Case Study: Balaroud dam, Iran. Alexandria Engineering Journal, 55(1), 467-473. DOI: https://doi.org/10.1016/j.aej.2016.01.006

Duró, G., De Dios, M., López, A., Liscia, S. y Angulo, M. (2012). Comparación de simulaciones en CFD y modelación física de una central hidrocombinada. En XXV Congreso Latinoamericano de Hidráulica. San José. Recuperado de http://sedici.unlp.edu.ar/bitstream/handle/10915/50102/Documento_completo__.pdf?sequence=3

Ingetec (2013). Documento No. Qd-ITE+13b-002. Bogotá D.C.: Ingetec - Universidad Nacional de Colombia (Sede Manizales).

James, W. y Young, B. (2001). An Approach to modeling real time control of dinamic and static radial and sluice gates within EXTRAN. Journal of Water Management Modelling, R207-22, 355-382. DOI: https://doi.org/10.14796/JWMM.R207-22

Kositgittiwong, D., Chinnarasri, C. y Julien, P. (2013). Numerical simulation of flow velocity profiles along a stepped spilway. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 227(4), 327-335. DOI: https://doi.org/10.1177/0954408912472172

Lars, D. (2017). An Introduction to turbulence models. Gotemburgo: Chalmers University of Technology.

Mejía, F., Suárez, J. y Vélez, J. (2012). Estudio en modelo hidráulico del vertedero del proyecto hidroeléctrico El Quimbo. Ponencia en XXV Congreso Latinoamericano de hidráulica. San José.

Moukalled, F., Mangani, L. y Darwish, M. (2016). The finite volume Method in computational fluid dynamics. An advanced introduction with OpenFoam® and Matlab®. Nueva York: Springer. Recuperado de http://www.gidropraktikum.narod.ru/Moukalled-et-al-FVM-OpenFOAM-Matlab.pdf

Pope, S. (2015). Turbulent Flows. Cambridge: Cambridge University Press.

United States Department of the Interior, Bureau of Reclamation (1987). Design of Small Dam. 3a. ed. Washington D.C.: U.S. Government Printing Office. Recuperado de https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/SmallDams.pdf

Zahedani, M., Keshavarzi, A., Javan, M. y Shahrokhnia, M. (2012). New equiation for estimation of radial gate discharge. Proceedings of the Institution of Civil Engineers - Water Management, 165(5), 253-263. DOI: https://doi.org/10.1680/wama.10.00080

Cómo citar
Ladino Moreno, E., Santos Granados, G., & García-Ubaque, C. (2018). Simulación numérica CFD de la estructura de control y del sistema de compuertas radiales - represa El Quimbo. Tecnura, 22(58), 65-78. https://doi.org/10.14483/22487638.14296
Publicado: 2018-12-20
Sección
Estudio de caso