Leaf and stem trait variation and plant functional types in 113 woody species of a seasonally dry tropical forest

Grupos funcionales y variación en rasgos foliares y de tallo de 113 especies leñosas en un bosque seco tropical

  • Carolina Castellanos Castro
  • Adrian C. Newton School of Applied Sciences, Bournemouth University
Palabras clave: resource use strategies, trade-offs, drought, phenology, phylogenetic group, life form (en_US)

Resumen (en_US)

In seasonally dry tropical forest (SDTF) plant trait variation has been associated with adaptation to light and water availability and a coordinated tolerance of plants to shortage of both resources has been proposed. We tested this hypothesis in a set of 113 species by analyzing the relationships amongst eleven leaf and stem traits that have been related to shade and drought tolerance. In addition, the usefulness of different types of functional classifications describing community plant trait variation was evaluated. Strong relationships were observed between leaf and stem traits, potentially conferring coordinated tolerance to shade and drought, and three axes of variation were identified by means of a principal component analysis. The first axis described leaf and stem economy, the second was related to leaf thickness and organization and the third was related to the trade-offs between leaf size, stem density and bark thickness. Stem density was correlated strongly with several plant traits, emphasizing its key role in explaining variation in life history strategies of SDTF species. Significant differences were found between functional groups categorized by phylogeny and leaf phenology, whereas for life forms differences were only observed for palms and bamboos. 

Resumen (es_ES)

En los bosques secos tropicales (BST) la variación en rasgos vegetales se ha relacionado con adaptaciones a cambios en la disponibilidad de luz y agua y se ha propuesto una tolerancia coordinada a la escasez de ambos recursos. En este estudio probamos dicha hipótesis en un conjunto de 113 especies mediante el análisis de la relación entre once rasgos funcionales de hojas y tallos, que se han asociado con la tolerancia a la sombra y la sequía. Adicionalmente, evaluamos la utilidad de diferentes clasificaciones funcionales para describir la variación de los rasgos en la comunidad de plantas estudiada. Se observaron relaciones fuertes entre rasgos de las hojas y el tallo, otorgando potencialmente tolerancia a la sombra y la sequía, además se identificaron tres ejes de variación a través de un análisis de componentes principales. El primer eje se relacionó con la economía de hojas y tallo, el segundo con el grosor y la organización de las hojas y el tercero con compromisos entre el tamaño de hoja, la densidad del tallo y el grosor de la corteza. La densidad del tallo se relacionó fuertemente con varios rasgos, enfatizando su papel clave explicando la variación en las estrategias de historia de vida de las especies de BST. Se observaron diferencias significativas entre grupos funcionales categorizados por filogenia y fenología, mientras que entre formas de vida solo se observaron diferencias para las palmas y guaduas.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Ackerly, D. (2004). Functional strategies of Chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs, 74, 25-44.

Baraloto C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A-M., Hérault, B., Patiño, S., Roggy, J-C., & Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.

Brando, P.M., Nepstad, D.C, Balch, J.K, Bolker, B., Christman, M.C., Coe, M. & Putz, F.E. (2012). Fire-induced tree mortality in a neotropical forest: the role of bark traits, tree size, wood density and fire behaviour. Global Change Biology, 18, 630-341

Chave, J. (2005). Measuring wood density for tropical forest trees. A field manual for the CTFS sites. 7 p. Available at: http://www.eci.ox.ac.uk/research/ecodynamics/panamazonia/wood_density_english.pdf

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., & Zanne, A.M. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.

Chatuverdi, R.K., Raghubanshi, A.S. & Singh, J.S. (2011). Plant functional traits with particular reference to tropical deciduous forests: a review. Journal of Biosciences, 36(5), 1-19.

Chazdon, R.L., Finegan, B., Capers, R.S., Salgado-Negret, B., Casanoves, F., Boukili, V., & Norden, N. (2010). Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica, 42, 31-40.

Choat, B., Ball, M.C., Luly, J.G., & Holtum, J.A.M. (2005). Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees, 19, 305-311.

Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich P.B., ter Steege, H., Morgan H.D., van der Heijden, M.G.A., Pausas, J.G., & Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.

Díaz, S., & Cabido, M. (1997). Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8, 463-474.

Díaz, S., & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem function. Trends in Ecology and Evolution, 16, 646-655.

Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A., Montserrat-Martí, G., Grime, J.P., Zarrinkamar, F., Asri, Y, Band, S.R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M.C., Shirvany, F.A., Vendramini, F., Yazdani, S., Abbas-Azimi, R., Bogaard, A., Boustani, S., Charles, M., Dehghan, M., de Torres-Espuny, L., Falczuk V., Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Martínez, M., Romo-Díez, A., Shaw, S., Siavash, B., Villar-Salvador, P., & Zak, M.R., 2004. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304.

Easdale, T., Gurvich, D.E., Sersic, A.N., & Healey, J.R. (2007). Tree morphology in seasonally dry montane forest in Argentina: relationships with shade tolerance and nutrient storage. Journal of Vegetation Science, 18, 313-326.

Enquist, B.J., & Enquist, C.A.F. (2011). Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Global Change Biology, 17, 1408-1424.

Finn, J.A., Kirwan, L., Connolly, J., Sebastià M.T., Helgadottir, A., Baadshaug, O.H, Bélanger, G., Black, A., Brophy, C., Collins, R.P., Čop, J., Dalmannsdóttir, S., Delgado, I., Elgersma, A., Fothergill, M., Frankow-Lindberg, B.E., Ghesquiere, A., Golinska, B., Golinski, P., Grieu, P., Gustavsson, A-M., Höglind, M., Huguenin-Elie, O., Jørgensen, M., Kadziuliene, Z., Kurki, P., Llurba, R., Lunnan, T., Porqueddu, C., Suter, M., Thumm, U., & Lüscher, A. (2013). Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. Journal of Applied Ecology, 50, 365-375.

Fortunel, C., Fine, P.V.A., & Baraloto, C., 2012. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 26, 1153-1161.

Fry, E., Manning, P., Allen, D.G.P., Hurst, A., Everwand, G., Rimmler, M. & Power, S.A. (2013). Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function. PLoS ONE, 8(2), e57027.

Fyllas, N.M., Quesada, C.A., & Lloyd, J. (2011). Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspectives in Plant Ecology, Evolution and Systematics, 14, 97-110.

Gentry, A.H. (1995). Diversity and floristic composition of neotropical dry forest. In: S.H. Bullock, H.A. Mooney & E.

Medina (eds.). Seasonally dry tropical forests (pp.146-194). Cambridge: Cambridge University Press.

Gilbert B., Wright, S.J., Muller-Landau, H.C., Kitajima, K., & Hernandéz, A. (2006). Life history trade-offs in tropical trees and lianas. Ecology, 87(5), 1281-1288.

Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194.

Grime, J.P., Thompson, K., Hunt, R., Hodgson, J.G., Cornelissen, J.H., Rorison, I.H., Hendry, G.A.F., Ashendenl, T.W., Askew, A.P., Band, S.R., Booth, R.E., Bossard, C.C., Campbell, B.D., Cooper, J.E.L., Davison, A.W., Gupta, P.L., Hall, W., Hand, D.W., Hannah, M.A., Hillier, S.H., Hodkinson, D.J., Jalili, A., Liu, Z., Mackey, J.M.L., Matthews, N., Mowforth, M. A., Neal, A.M., Reader, R.J., Reiling, K., Ross-Fraser, W., Spencer, R.E., Sutton, F., Tasker, D.E., Thorpe, P.C. & Whitehouse, J. (1997). Integrated screening validates primary axes of specialization in plants. Oikos, 79, 259-281.

Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics and Data Analysis, 52, 258-271.

Hennig, C. (2014). fpc: Flexible procedures for clustering. R package version 2.1-7. Available at: http://CRAN.R-project.org/package=fpc

Hillebrand, H., & Mathiesssen, B. (2009). Biodiversity in a complex world: consolidation and progress in functional diversity research. Ecology Letters, 12, 1405-1419.

Khurana, E., Sagar, R., & Singh, J.S. (2006). Seed size: a key trait determining species distribution and diversity of dry tropical forest in northern India. Acta Oecologica, 29, 196-204.

Kitajima, K., & Poorter, L. (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 186, 708-721.

Kraft, N.J.B., Valencia, R., & Ackerly D.D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.

Kraft, N.J.B., Metz, M.R., Condit, R.S., & Chave, J. (2010). The relationship between wood density and mortality in a global tropical forest data set. New Phytologist, 188, 1124-1136.

Laliberté, E., Wells, J.A., DeClerck, F., Metcalfe, D.J., Catterall, C.P., Queiroz, C., Aubin, I., Bonser, S.P., Ding, Y., Fraterrigo, J.M., McNamara, S., Morgan, J.W., Sánchez Merlos D., Vesk, P.A., & Mayfield, M.M. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters, 13, 76-86.

Lavorel, S., Díaz, S., Cornelissen, J.H.C., Garnier, E., Harrison, S.P., McIntyre, S., Pausas, J.G., Pérez-Harguindeguy, N., Roumet, C., & Urcelay, C. (2007). Plant Functional Types: Are We Getting Any Closer to the Holy Grail? In: J.G. Canadell, D.E. Pataki & L.F. Pitelka (eds.). Terrestrial ecosystems in a changing world (pp. 149-164). The IGBP Series. Berlin and Heidelberg: Springer-Verlag,

Lebrija-Trejos, E., Pérez-García, E.A., Meave, J.A., Poorter, L. & Bongers, F. (2009). Environmental changes during secondary succession in a tropical dry forest in Mexico. Journal of Tropical Ecology, 27, 477-489.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2012). cluster: Cluster Analysis Basics and Extensions. R package version 1.14.3. Available at:

http://cran.rproject.org/web/packages/cluster/index.html

Malhado, A.C.M., Malhi, Y., Whittaker, R.J., Ladle, R.J., ter Steege, H., Phillips, O.L., Butt, N., Aragão, L.E.O.C., Quesada, C.A., Araujo-Murakami, A., Arroyo, L., Peacock, J., Lopez-Gonzalez, G., Baker, T.R., Anderson, L.O., Almeida, S., Higuchi, N., Killeen, T.J., Monteagudo, A., Neill, D., Pitman, N., Prieto, A., Salomão, R.P., Vásquez-Martínez, R. & Laurance, W.F. (2009). Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 6, 1563-1576.

Malhado, A.C.M., Whittaker, R.J., Malhi, Y., Ladle, R.J., ter Steege, H., Phillips, O., Aragão, L.E.O.C., Baker, T.R., Arroyo, L., Almeida, S., Higuchi, N., Killeen, T.J., Monteagudo, A., Pitman, N.C.A., Prieto, A., Salomão, R.P., Vásquez-Martínez, R., Laurance, W.F. & Ramírez-Angulo, H. (2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 19, 852-862.

Markesteijn, L. & Poorter, L. (2009). Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology, 97, 311-325.

Markesteijn, L. Poorter, L., Paz, H., Sack, L., & Bongers, F. (2010). Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell and Environment, 34, 137-148.

Markesteijn, L., Poorter, L., Bongers, F., Paz, H. & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytologist, 191, 480-495.

Mooney H.A., Bullock, S.H., & Medina, E. (1995). Introduction. En: S.H. Bullock, H.A. Mooney & E. Medina (eds.). Seasonally dry tropical forests (pp. 1-8). Cambridge: Cambridge University Press.

Niinemets, Ü., Portsmuth, A., & Tobias, M. (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., & Wagner, H. (2012). Vegan: Community Ecology Package. R package version 2.0-5. Available at: http://CRAN.R-project.org/package=vegan.

Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C., Díaz, S., Dominy, N.J., Elgart, A., Enrico, L., Fine, P.V.A., Howard, J.J., Jalili, A., Kitajima, K., Kurokawa, H., McArthur, C., Lucas, P.W., Markesteijn, L., Pérez-Harguindeguy, N., Poorter, L., Richards, L., Santiago L.S., Sosinski, E.E. Jr., Van Bael, S.A., Warton, D.I., Wright, I.J., Wright, S.J. & Yamashita, N. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14(3), 301-312.

Paine, C.E.T., Stahl, C., Courtois, E.A., Patiño, S., Sarmiento, C. and Baraloto, C. (2010). Functional explanations for variation in bark thickness in tropical rain forest trees. Functional Ecology, 24, 1202-1210.

Patiño, S., Fyllas, N.M., Baker, T.R., Paiva, R., Quesada, C.A., Santos, A.J.B., Schwarz, M., ter Steege, H., Phillips, O.L., & Lloyd, J. (2012). Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences, 9, 775-801.

Pineda-Garcia, F., Paz, H., & Tinoco-Ojanguren, C. (2011). Morphological and physiological differentiation of seedlings between dry and wet habitats in a tropical dry forest. Plant, Cell and Environment, 34, 1536–1547.p

Pineda-Garcia, F., Paz, H., & Meinzer, F.C. (2013). Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant, Cell and Environment, 36, 405-418.

Poorter, L. (2005). Resource capture and use by tropical forest tree seedlings and their consequences for competition. En: D.F.R.P. Burslem, M.A. Pinard & S.E.

Hartley (eds.). Biotic Interactions in the Tropics (pp. 35-64). Cambridge: Cambridge University Press,

Poorter, L. (2007). Are species adapted to their regeneration niche, adult niche, or both? American Naturalist, 169(4), 433-442.

Poorter, L. (2009). Leaf traits show different relationships with shade in moist versus dry tropical forests. New phytologist, 191, 890-900.

Poorter, L. & Bongers, F. (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743

Poorter, L. & Kitajima, K. (2007). Carbohydrate storage and light requirements of tropical moist and dry forest species. Ecology, 88, 1000-1011.

Poorter, L. and Markesteinj, L. (2008). Seedling traits determine drought tolerance in seedlings of tropical tree species. Biotropica, 40, 321-331.

Poorter, L., Wright, S. J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Licona, J.C. Martínez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Peña-Claros, M., Webb, C.O., & Wright I.J. (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89(7), 1908-1920.

Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J-C., Peña-Claros, M.,Sterck, F., Villegas, Z., & Sass-Klaassen, U., 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481-492.

Powers, J., & Tiffin, P. (2010). Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Functional Ecology, 24, 927-936.

Pringle E. G., Adams R.I., Broadbent E., Busby P.E., Donatti C.I., Kurten E.L., Renton K., & Dirzo R. (2010). Distinct leaf-traits syndromes of evergreen and deciduous trees in a seasonally dry tropical forest. Biotropica, 43, 299-308.

Rodríguez, G. M., Banda-R, K., Reyes, S.P., & Estupiñán, A.C. (2012). Lista comentada de las plantas vasculares de bosques secos prioritarios para la conservación en los departamentos de Atlántico y Bolívar (Caribe colombiano). Biota Colombiana, 13, 7-39.

Rüger, N., Huth, A., Hubbell, S.P., & Condit, R. (2012). Response of recruitment to light availability across a tropical lowland rain forest community. Journal of Ecology, 97, 1360-1368.

Santiago, L.S., & Wright, S.J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27.

Sanson, G., Read, J., Aranwela, N., Clissold, F., & Peeters, P. (2001). Measurement of leaf mechanical properties in studies of herbivory: opportunities, problems and procedures. Austral Ecology, 26, 535-546.

Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611.

Sterck, F., Markesteijn, L., Schieving, F., & Poorter, L., (2011). Functional traits determine trade-offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences, 108, 20627-20632.

Schnitzer, S.A., & Bongers, F. (2002). The ecology of lianas and their role in forests. Trends in Ecology and Evolution, 17(5), 223-230.

Van der Sande, M., Poorter, L., Schnitzer, S.A., & Markesteijn, L. (2013). Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia, 172, 961-972.

Ward, S.E., Bardgett, R.D., McNamara, N.P., & Ostle, N.J. (2009). Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology, 23, 454-462.

Wardle, D.A., Bonner, K.I., & Barker, G.M. (2000). Stability of ecosystem properties in response to above-ground functional group richness and composition. Oikos, 89, 11-23.

Warman, L., Moles, A.T., & Edwards, W. (2010). Not so simple after all: searching for ecological advantages of compound leaves. Oikos, 120(6), 813-821.

Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Garnier, E., & Eriksson, O. (1999). Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science, 10, 609-620.

Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology scheme. Plant and Soil, 199: 213-227.

Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.

Westoby, M., & Wright, I.J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 21: 261-268.

Wilson, P.J., Thompson, K., & Hodgson, J.G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.

Wright, I.J., & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 15(3), 351-359.

Wright, I.J., & Westoby, M. (2002). Leaves at low versus high rain fall: coordination of structure, lifespan and physiology. New Phytologist, 155, 403-416.

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P-K., Gulias, J., Hikosaka, K, Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M-L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.K., Veneklaas, E.J., & Villar, R. 2004. The worldwide leaf economics spectrum. Nature, 428, 821-827.

Wright, J.P., Naeem, S., Hector, A., Lehman, C., Reich, P.B., Schmid, B., & Tilman, D. (2006). Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters, 9, 111-120.

Wright, I.J., Ackerly, D.A., Bongers, F., Harms, K.E., Ibarra-Manriquez, G., Martínez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Paz, H., Pitman, N.C.A., Poorter, L., Silman, M.R., Vriesendorp, C.F., Webb, C.O., Westoby, M., & Wright, S.J. (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.

Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R., Dalling, J. W., Davies, S.J., Díaz, S., Engelbrecht, B.M.J., Harms, K.E., Hubbell, S.P., Marks, C.O., Ruiz-Jaen, M.C., Salvador, C.M., & Zanne, A.E. (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664-3674.

Cómo citar
Castellanos Castro, C., & Newton, A. (2015). Grupos funcionales y variación en rasgos foliares y de tallo de 113 especies leñosas en un bosque seco tropical. Colombia Forestal, 18(1), 117-138. https://doi.org/10.14483/udistrital.jour.colomb.for.2015.1.a07
Publicado: 2015-01-01
Sección
Artículos de investigación científica y tecnológica