Adsorción de Cadmio, Cobre y Plomo en Bentonita, Caolín y Zeolita Naturales y Modificadas: Una Revisión de los Parámetros de Operación, Isotermas y Cinética

Cadmium, Copper and Lead Adsorption on Natural and Modified Bentonite, Kaolin and Zeolite: A Review of Process Parameters, Isotherms and Kinetics

Abstract (es_ES)

Contexto: La adsorción es un proceso efectivo para el tratamiento de aguas residuales contaminadas con metales pesados. El uso de adsorbentes de bajo costo incrementa la ventaja y competitividad de este proceso. Arcillas y zeolitas, naturales y modificadas, han sido usadas ampliamente para la remoción de metales pesados de aguas residuales.

Método: Se revisaron, analizaron y compararon los estudios, realizados durante la última década, referentes a la adsorción de cadmio, cobre y plomo por bentonita, caolín y zeolita, naturales y modificadas.

Resultados: Se analizan diferentes parámetros de operación, condiciones de equilibrio y cinética. Los parámetros de operación estudiados son la concentración inicial de metales, pH de la solución, dosis de adsorbente y temperatura del sistema. Se presenta una recopilación de la eficiencia de los sistemas respecto a la capacidad máxima de adsorción. Se discuten los modelos de isotermas usados para analizar el equilibrio de adsorción así como los modelos cinéticos y de difusión en los estudios revisados.

Conclusiones: El uso de bentonita, caolín y zeolita es efectivo para la remoción de cadmio, cobre y plomo de soluciones acuosas. La influencia de diversos parámetros de operación se ve reflejado en la variabilidad de las capacidades de adsorción de cadmio, cobre y plomo. En relación al equilibrio de adsorción en la mayoría de estudios revisados la isoterma de Langmuir es la que mejor se ajusta a los datos. En cuanto a la cinética el modelo de pseudo-segundo orden es el que mejor se ajusta a los datos.

Abstract (en_US)

Context:  Adsorption is a tertiary wastewater treatment that can be effectively employed to remove metal ions from aqueous solutions. Natural and modified clays and zeolites have been widely use as low-cost materials to increase the competitive advantage of the process.

Methodology: A comprehensive review was made amongst articles, that during the last decade, have studied cadmium, copper and lead adsorption onto natural and modified bentonite, clay and zeolite.

Results: Different process parameters, equilibrium conditions and kinetics were analyzed. Operation parameters studied were initial metal ion concentration, solution pH, adsorbent dosage and temperature. Compilation of system efficiencies, in regards to maximum adsorption capacity, is presented. Isotherm models to assess adsorption equilibrium as well as kinetic and diffusion models in studies reviewed are discussed.

Conclusions: Bentonite, kaolin and zeolite have been proven to be adequate materials to remove cadmium, copper and lead from aqueous solutions. The different adsorption capacities of cadmium, lead and copper are a reflection of the influence of many process parameters. The Langmuir isotherm usually describes best the equilibrium adsorption in the articles reviewed. Finally, the pseudo-second orden model better describes the kinetics in many cases.

Downloads

Download data is not yet available.

Author Biography

Dalia Carbonel, Universidad Nacional de Ingeniería

Escuela de Posgrado de la Facultad de Ingeniería Ambiental, Universidad Nacional de Ingeniería

References

Abdelhamid, B., Ourari, A., Ouali, M. S. 2012. Copper (II) ions removal from aqueous solution using bentonite treated with ammonium chloride. American Journal of Physical Chemistry, 1(1), 1-10.

Alexander, J. A., Ahmad Zaini, M., Surajudeen, A., Aliyu, E., Omeiza, A. U. 2017a. Insight into kinetics and thermodynamics properties of multicomponent lead (II), cadmium (II) and manganese (II) adsorption onto Dijah-Monkin bentonite clay. Particulate Science and Technology, 1-9.

Alexander, J. A., Surajudeen, A., Aliyu, E., Omeiza, A., Zaini, M. 2017b. Multi metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay. Water Science and Technology, 76(7-8), 2232-2241.

Alexander, J. A., Zaini, M., Abdulsalam, S., Aliyu El-Nafaty, U., Aroke, U. O. 2018. Isotherm studies of lead (II), manganese (II), and cadmium (II) adsorption by Nigerian bentonite clay in single and multimetal solutions. Particulate Science and Technology, 1-11.

Al Dwairi, R., Omar, W., Al-Harahsheh, S. 2015. Kinetic modelling for heavy metal adsorption using Jordanian low cost natural zeolite (fixed bed column study). Journal of Water Reuse and Desalination, 5(2), 231-238.

Al-Jlil, S.A., Latif, M.S. 2013. Evaluation of Equilibrium Isotherm Models for The Adsorption of Cu and Ni from Wastewater on Bentonite Clay. Materiali in tehnologije, 47(4), 481-486.

Awual, M.R., Ismael, M., Yaita, T., Safty, S.A.E., Shiwaku, H., Okamoto, Y., Suzuki, S. 2013. Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chemical Engineering Journal. 222, 67–76.

Bergaya, F., Lagaly, G. ed., 2013. Handbook of Clay Science, Volume 5. Elsevier, Amsterdam , Holanda.

Bhattacharyya, K. G., Gupta, S. S. 2007. Adsorption of Co (II) from aqueous medium on natural and acid activated kaolinite and montmorillonite. Separation Science and Technology, 42(15), 3391-3418.

Bisht, R., Agrawal, M., Singh, K. 2016. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 7(1).

Boparai, H. K., Joseph, M., O’Carroll, D. M. 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of hazardous materials, 186(1), 458-465.

Bourliva A., Michailidis K., Filippidis A., Sikalidis, C., Betsiou, M., Bantsis, G. 2011. Copper removal from single and multi-component systems by natural bentonite from milos island, Greece. 8th Panhellenic Scientific Conference on Chemical Engineering, Thessaloniki, Greece, 26-28/05/2011, Proceedings, 8p.

Bourliva, A., Michailidis, K., Sikalidis, C., Filippidis, A., Betsiou, M. 2013. Lead removal from aqueous solutions by natural Greek bentonites. Clay Minerals, 48(5), 771-787.

Bourliva, A., Michailidis, K., Sikalidis, C., Filippidis, A., Betsiou, M. 2014. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems. Environmental Earth Sciences, 73(9), 5435-5444.

Budsaereechai, S., Kamwialisak, K., Ngernyen, Y. 2012. Adsorption of lead, cadmium and copper on natural and acid activated bentonite clay. Asia-Pacific Journal of Science and Technology, 17(5), 800-810.

Carolin, C., Kumar, P., Saravanan, A., Joshiba, G., Naushad, M. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782-2799.

Cheng, H., Liu, Q., Yang, J., Ma, S., Frost, R. L. 2012. The thermal behavior of kaolinite intercalation complexes-A review. Thermochimica Acta, 545, 1-13.

Chien, S. H., Clayton, W. R. 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils 1. Soil Science Society of America Journal, 44(2), 265-268.

Choi, H., Yu, S., Kim, K. 2016. Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions. Journal of the Taiwan Institute of Chemical Engineers, 63, 482-489.

Ćurković, L., Trgo, M., Rožić, M., Medvidović, N. V. 2011. Kinetics and thermodynamics study of copper ions removal by natural clinoptilolite. Indian Journal of Chemical Technology, 18(2), 137-144.

Drweesh, S., Fathy, N., Wahba, M., Hanna, A., Akarish, A., Elzahany, E., El-Sherif, I., Abou-El-Sherbini, K. 2016. Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. Journal of Environmental Chemical Engineering, 4(2), 1674-1684.

El-Latif, M. A., Ibrahim, A. M., El-Kady, M. F. 2010. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. Journal of American Science, 6(6), 267-283.

Ghibate, R., Sabry, F., Senhaji, O., Taouil, R., Touzani, M. 2017. State of the art of technologies for Zn2+ ions removal from industrial effluents with adsorption: Examination of process parameters (Part I). International Journal, 2, 39-48.

Goyal, N., Jain, S. C., Banerjee, U. C. 2003. Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7(2), 311-319.

Gupta, S. S., Bhattacharyya, K. G. 2014. Adsorption of metal ions by clays and inorganic solids. Rsc Advances, 4(54), 28537-28586.

Helfferich, F. 1995. Ion Exchange. Dover, New York, USA.

Ho, Y. S., Porter, J. F., McKay, G. 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, air, and soil pollution, 141(1-4), 1-33.

Hui, K. S., Chao, C. Y. H., Kot, S. C. 2005. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials, 127(1-3), 89-101.

Ihsanullah, F.A.A., Abusharkh, K.B., Khaled, M., Atieh, M.A., Nasser, M.S., Laoui, T., Agarwal, S., Tyagi, I., Gupta, V.K. 2015. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents, Journal of Molecular Liquids. 204, 255–263.

Inglezakis, V. J., Loizidou, M. M., Grigoropoulou, H. P. 2004. Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility. Journal of Colloid and Interface Science, 275(2), 570-576.

Irannajad, M., Kamran Haghighi, H., Safarzadeh, E. 2016. Development of kinetic and equilibrium models for removal of Cd2+ and Zn2+ ions from aqueous solutions by clinoptilolite. Environmental Progress & Sustainable Energy, 35(3), 633-641.

Ismadji, S., Soetaredjo, F., Ayucitra, A. 2015. Clay Materials for Environmental Remediation. Springer Cham, Londres, Inglaterra.

Ismael, I., Melegy, A., Kratochvíl, T. 2011. Lead Removal from Aqueous Solution by Natural and Pretreated Zeolites. Geotechnical and Geological Engineering, 30(1), 253-262.

Kocaoba, S., Akyuz, T. 2005. Effects of conditioning of sepiolite prior to cobalt and nickel removal. Desalination, 181(1-3), 313-318.

Kostin, A. V., Mostalygina, L. V., Bukhtoyarov, O. I. 2015. The mechanism of adsorption of zinc and cadmium ions onto bentonite clay. Protection of Metals and Physical Chemistry of Surfaces, 51(5), 773-778.

Kyzioł-Komosińska, J., Rosik-Dulewska, C., Franus, M., Antoszczyszyn-Szpicka, P., Czupiol, J., Krzyzewska, I. 2015. Sorption Capacities of Natural and Synthetic Zeolites for Cu (II) Ions. Polish Journal of Environmental Studies, 24(3).

Lee, S. M., Laldawngliana, C., Tiwari, D. 2012. Iron oxide nano-particles-immobilized-sand material in the treatment of Cu (II), Cd (II) and Pb (II) contaminated waste waters. Chemical Engineering Journal, 195, 103-111.

Malamis, S., Katsou, E. 2013. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252-253, 428-461.

Mathews, A. P., Weber, W. 1977. Effects of external mass transfer and intraparticle diffusion on adsorption rates in slurry reactors. In AIChE Symposium Series, 73 (166).

Melichová, Z., Hromada, L. 2013. Adsorption of Pb2+ and Cu2+ ions from aqueous solutions on natural bentonite. Polish Journal of Environmental Studies, 22(2), 457-464.

Merrikhpour, H., Jalali, M. 2013. Sorption processes of natural Iranian bentonite exchanged with Cd2+, Cu2+, Ni2+, and Pb2+ cations. Chemical Engineering Communications, 200(12), 1645-1665.

Mihaila, G., Barbu, H. C., Lutic, D., Sava, M. I. 1997. Adsorption of sulphur dioxide on clinoptilolite volcanic tuff. Natural Zeolites-Sofia, 95, 146-152.

Ministerio de Salud. 2015. Guía de Práctica Clínica para el Diagnóstico y Tratamiento de la Intoxicación por Cadmio. Lima, Perú.

Nouri, L., Ghodbane, I., Hamdaoui, O., Chiha, M. 2007. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. Journal of Hazardous Materials, 149(1), 115-125.

Novikova, L., Belchinskaya, L. 2016. Adsorption of industrial pollutants by natural and modified aluminosilicates. In Clays, Clay Minerals and Ceramic Materials Based on Clay Minerals. InTech.

OMS. 2016. Guías para la calidad del agua potable. WHO Press, Ginebra, Suiza.

Pandey, S. 2017. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 241, 1091-1113.

Park, D., Yun, Y. S., Park, J. M. 2010. The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86-102.

Pawar, R., Lalhmunsiama, Bajaj, H., Lee, S. 2016. Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies. Journal of Industrial and Engineering Chemistry, 34, 213-223.

Rahimi, M., Mahmoudi, J. 2017. Studies on optimization of efficient parameters for removal of lead from aqueous solutions by natural zeolite as a low-cost adsorbent using response surface methodology. Advances in Environmental Technology, 2, 99-108.

Salem, A., Akbari Sene, R. 2011. Removal of lead from solution by combination of natural zeolite–kaolin–bentonite as a new low-cost adsorbent. Chemical Engineering Journal, 174(2-3), 619-628.

Sarı, A., Tüzen, M. 2013. Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous and Mesoporous Materials, 170, 155-163.

Sari, A., Tüzen, M. 2014. Cd (II) adsorption from aqueous solution by raw and modified kaolinite. Applied Clay Science, 88, 63-72.

Shaban, M., Abukhadra, M. R. 2017. Geochemical evaluation and environmental application of Yemeni natural zeolite as sorbent for Cd 2+ from solution: kinetic modeling, equilibrium studies, and statistical optimization. Environmental Earth Sciences, 76(8), 310.

Sharifipour, F., Hojati, S., Landi, A., Faz Cano, A. 2015. Kinetics and thermodynamics of lead adsorption from aqueous solutions onto Iranian sepiolite and zeolite. International Journal of Environmental Research, 9(3), 1001-1010.

Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L., Shukla, S. S. 2002. The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, 95(1-2), 137-152.

Tang, Q., Tang, X., Li, Z., Chen, Y., Kou, N., Sun, Z. 2009. Adsorption and desorption behaviour of Pb (II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies. Journal of Chemical Technology and Biotechnology, 84(9), 1371-1380.

Taty-Costodes, V. C., Fauduet, H., Porte, C., Delacroix, A. 2003. Removal of Cd (II) and Pb (II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105(1-3), 121-142.

Tiwari, D., Kim, H. U., Lee, S. M. 2007. Removal behavior of sericite for Cu (II) and Pb (II) from aqueous solutions: batch and column studies. Separation and Purification Technology, 57(1), 11-16.

Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., Chao, H. P. 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research, 120, 88-116.

Uddin, M. K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462.

Wang, J., Chen, C. 2009. Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226.

Wang, S., Nan, Z., Cao, X., Liao, Q., Liu, J., Wu, W., Zhou, T., Zhao, C., Jin, W. 2011. Sorption and desorption behavior of lead on a Chinese kaolin. Environmental Earth Sciences, 63(1), 145-149.

Weber, W. J., Morris, J. C. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.

Worch, E. 2012. Adsorption technology in water treatment. Walter de Gruyter, Berlin, Alemania.

Zendelska, A., Golomeova, M. 2014. Effect of competing cations (Cu, Zn, Mn, Pb) adsorbed by natural zeolite. International Journal of Science, Engineering and Technology, 2(5), 483-492.

Zhao, G., Wu, X., Tan, X., Wang, X. 2011. Sorption of heavy metal ions from aqueous solutions: a review. The Open Colloid Science Journal, 4(1), 19-31.

Zehhaf, A., Benyoucef, A., Berenguer, R., Quijada, C., Taleb, S., Morallon, E. 2012. Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. Journal of Thermal Analysis and Calorimetry, 110(3), 1069-1077.

Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H. 2016. Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, 239-258.

How to Cite
Carbonel, D. (2018). Cadmium, Copper and Lead Adsorption on Natural and Modified Bentonite, Kaolin and Zeolite: A Review of Process Parameters, Isotherms and Kinetics. Ingeniería, 23(3). https://doi.org/10.14483/23448393.13418
Published: 2018-09-28
Section
Environmental Engineering