Orthomosaics and digital elevation models generated from images taken with UAV systems

Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV

  • Jesús Orlando Escalante Torrado Universidad Industrial de Santander
  • Jhon Jairo Cáceres Jiménez Universidad Industrial de Santander
  • Hernán Porras Díaz Universidad Industrial de Santander
Palabras clave: aerial images, DSM, orthomosaic, point clouds, UAV. (en_US)
Palabras clave: imágenes aéreas, MDE, nube de puntos, ortomosaicos, UAV. (es_ES)

Resumen (en_US)

Context: Nowadays, Unmanned Aerial Vehicles (UAVs) are among the technological tools most researched and applied  in areas such as aerial photogrammetry and remote sensing, presenting itself as an important alternative for capturing imagery with high spatial and temporal resolution. However, UAV flight parameters, image and sensor characteristics, result on major challenges for traditional processing for producing mapping products such as digital elevation models and orthomosaics, that is why it is required to identify new processing strategies.

Method: In this paper, a review of the main characteristics of UAVs used in aerial photogrammetry is done, along with related processing strategies currently being used in areas such as computer vision and photogrammetry.

Results: From this review, it is shown that processing strategies in the area of computer vision are more akin to the information captured with UAV systems for generating digital elevation models and orthomosaics.

Conclusions: The technological advances in UAVs systems and advances in strategies for processing large data volumes continue to drive research and application of these systems for the generation of mapping products more accurately in areas such as photogrammetry and computer vision.

Resumen (es_ES)

Contexto: Actualmente, los vehículos aéreos no tripulados (UAV por su sigla en inglés) son una de las herramientas tecnologías de mayor investigación y aplicación en áreas como la fotogrametría aérea y de percepción remota, presentándose como una importante alternativa para la captura de imágenes de alta resolución espacial y temporal. Sin embargo, las características de vuelo, de las imágenes y de los sensores utilizados en los UAV generan grandes desafíos en el procesamiento tradicional para la generación de productos cartográficos como modelos digitales de elevación y ortomosaicos, por lo que se requiere de la identificación de nuevas estrategias de procesamiento.

Método: En el presente artículo se realiza una revisión bibliográfica de las principales características de los UAV empleados en fotogrametría aérea junto con las estrategias de procesamiento afines que actualmente se están empleando en áreas como visión por computador y fotogrametría.

Resultados: A partir de la revisión se observa que las estrategias de procesamiento en el área de visión por computador son más afines con la información capturada con los sistemas UAV para la generación de modelos digitales de elevación y ortomosaicos.

Conclusiones: Los adelantos tecnológicos de los sistemas UAV y los avances en las estrategias de procesamiento de grandes volúmenes de datos seguirán impulsando la investigación y aplicación de estos sistemas en áreas como la fotogrametría y visión por computador, para la generación de productos cartográficos de mayor precisión.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jesús Orlando Escalante Torrado, Universidad Industrial de Santander

Ingeniero Civil, Estudiante de maestría en ingeniería civil, investigador Grupo Geomática, Universidad Industrial de Santander

Jhon Jairo Cáceres Jiménez, Universidad Industrial de Santander

Ingeniero de Sistemas, Doctor en ingeniería civil y costera, docente e investigador de la Universidad Industrial de Santander

Hernán Porras Díaz, Universidad Industrial de Santander

Ingeniero Civil, Doctor en ingeniería telemática, Director Grupo Geomática, Universidad Industrial de Santander

Referencias

Adams, S. M., & Friedland, C. J. (2011). A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management. In 9th International Workshop on Remote Sensing for Disaster Response (p. 8). Stanford, CA, USA. Retrieved from http://blume.stanford.edu/sites/default/files/RS_Adams_Survey_paper_0.pdf

Aerocivil. (2009). Normas de aeronavegabilidad y operación de aeronaves. In Reglamentos Aeronáuticos de Colombia (p. 660).

Aerocivil. (2015). Requisitos Generales de Aeronavegabilidad y Operaciones para RPAS. Retrieved from https://www.aerocivil.gov.co/AAeronautica/Rrglamentacion/Cirdulares/CircularesReglamentarias/CR-5100-082-002.pdf

Aibotix. (2014). Aibot X6 Multicopter for Mapping and Industry. Retrieved September 5, 2014, from http://www.aibotix.com/

Anai, T., Sasaki, T., Osaragi, K., Yamada, M., Otomo, F., & Otani, H. (2012). Automatic Exterior Orientation Procedure for Low-Cost Uav Photogrammetry Using Video Image Tracking Technique and Gps Information. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7(September), 469–474. doi:10.5194/isprsarchives-XXXIX-B7-469-2012

Arthur, M., Al-Tahir, R., & Davis, D. (2012). Rapid Processing of Unmanned Aerial Vehicles Imagery for Disaster Management. FIG Working Week 2012, (May 2012), 6–10.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y. (1998). An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions. Journal of the ACM, 45(6), 1–31.

Barazzetti, L., Brumana, R., Oreni, D., Previtali, M., & Roncoroni, F. (2014). True-orthophoto generation from UAV images: Implementation of a combined photogrammetric and computer vision approach. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5(June), 57–63. doi:10.5194/isprsannals-II-5-57-2014

Barazzetti, L., Remondino, F., & Scaioni, M. (2010a). Automation in 3D reconstruction: results on different kinds of close-range blocks. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(5), 55–61. Retrieved from http://isprsserv.ifp.uni-stuttgart.de/proceedings/XXXVIII/part5/papers/106.pdf

Barazzetti, L., Remondino, F., & Scaioni, M. (2010b). Extraction of accurate tie points for automated pose estimation of close-range blocks. ISPRS Technical Commission III …, XXXVIII(3A), 151–156. Retrieved from http://www.isprs.org/proceedings/xxxviii/part3/a/pdf/151_XXXVIII-part3A.pdf

Barazzetti, L., Scaioni, M., & Remondino, F. (2010). Orientation and 3D modelling from markerless terrestrial images: combining accuracy with automation. The Photogrammetric Record, 25(132), 356–381. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1477-9730.2010.00599.x/full

Bay, H., Tuytelaars, T., & Gool, L. Van. (2006). SURF : Speeded Up Robust Features. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer Vision – ECCV 2006 (pp. 404–417). Springer Berlin Heidelberg. doi:10.1007/11744023_32

Bendea, H., Boccardo, P., Tonolo, F. G., Marenchino, D., & Piras, M. (2008). Low cost UAV for post-disaster assessment. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B8), 1373–1380. Retrieved from http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/14_ThS-20/37.pdf

Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., González-Dugo, V., & Fereres, E. (2009). Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. In C. Heipke, K. Jacobsen, S. Müller, & U. Sörgel (Eds.), ISPRS Hannover Workshop 2009 (p. 6). Hannover, Germany. Retrieved from http://isprsserv.ifp.uni-stuttgart.de/proceedings/XXXVIII/1_4_7-W5/paper/Jimenez_Berni-155.pdf

Bláha, M., Eisenbeiss, H., Grimm, D., & Limpach, P. (2011). Direct georeferencing of UAVs. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(1/C22), 131–136. Retrieved from http://www.igp.ethz.ch/photogrammetry/publications/pdf_folder/2011_Direct_Georeferencing_of_UAVS.pdf

Chen, W., & Zhao, Y. (2011). An improved SIFT algorithm for image feature-matching. 2011 International Conference on Multimedia Technology, 197–200. doi:10.1109/ICMT.2011.6003022

Cheng, Y., Xue, D., & Li, Y. (2007). A Fast Mosaic Approach for Remote Sensing Images. 2007 International Conference on Mechatronics and Automation, 2009–2013. doi:10.1109/ICMA.2007.4303859

Chiabrando, F., Nex, F., Piatti, D., & Rinaudo, F. (2011). UAV and RPV systems for photogrammetric surveys in archaelogical areas: two tests in the Piedmont region (Italy). Journal of Archaeological Science, 38(3), 697–710. doi:10.1016/j.jas.2010.10.022

Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. doi:10.1016/j.isprsjprs.2014.02.013

Cramer, M. (1999). Direct Geocoding-is Aerial Triangulation Obsolete? In Photogrammetric Week “99” (pp. 59–70). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.3058

Douterloigne, K., Gautama, S., & Philips, W. (2009). Fully automatic and robust UAV camera calibration using chessboard patterns. International Geoscience and Remote Sensing Symposium (IGARSS), 2, 551–554. doi:10.1109/IGARSS.2009.5418141

Eisenbeiss, H. (2009). UAV Photogrammetry. ETH and Institute of Geodesy and Photogrammetry, Zurich.

Eisenbeiss, H., & Zhang, L. (2006). Comparison of DSMs generated from mini UAV imagery and terrestrial laser scanner in a cultural heritage application. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVI-5, 90–96. doi:10.1.1.221.8350

Elaksher, A. (2008). A multi-photo least squares matching algorithm for urban area DEM refinement using breaklines. International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences 37, Part B3A, XXXVII(B3a), 33–38. Retrieved from http://www.isprs.org/proceedings/XXXVII/congress/3_pdf/05a.pdf

El-Habrouk, H., Li, X. P., & Faig, W. (1996). Determination of geometric characteristics of a Digital Camera by Self-Calibration. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXI(B1), 60–64.

Everaerts, J. (2008). The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B1), 1187–1192. Retrieved from http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/203.pdf

Fischler, M. A., & Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM, 24(6), 381–395.

Forstner, W., & Gulch, E. (1987). A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centres of Circular Features.pdf. ISPRS Intercommission Workshop, Interlaken.

Furukawa, Y., & Ponce, J. (2007). Accurate, dense, and robust multiview stereopsis. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Vol. 32, pp. 1–8). Minneapolis, USA. doi:10.1109/TPAMI.2009.161

Gehrke, S., Morin, K., & Downey, M. (2010). Semi-global matching: An alternative to LIDAR for DSM generation. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Retrieved from http://www.isprs.org/proceedings/xxxviii/part1/11/11_01_Paper_121.pdf

Gini, R., Pagliari, D., Passoni, D., Pinto, L., Sona, G., & Dosso, P. (2013). UAV PHOTOGRAMMETRY : BLOCK TRIANGULATION COMPARISONS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL(1/W2), 157–162.

Haala, N. (2011). Multiray Photogrammetry and Dense Image Matching. In D. Fritsch (Ed.), Photogrammetric Week ’11 (pp. 185–195). Stuttgart: Wichmann.

Haala, N., Cramer, M., Weimer, F., & Trittler, M. (2012). Performance Test on Uav-Based Photogrammetric Data Collection. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/, 7–12. doi:10.5194/isprsarchives-XXXVIII-1-C22-7-2011

Harris, C., & Stephens, M. (1988). A Combined Corner and Edge Detector. Procedings of the Alvey Vision Conference 1988, 147–151. doi:10.5244/C.2.23

Heikkila, J., & Silvén, O. (1997). A four-step camera calibration procedure with implicit image correction. In Conference on Computer Vision and Pattern Recognition (pp. 1106–1112). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=609468

Hemayed, E. E. E. E. (2003). A survey of camera self-calibration. Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2003., 351–357. doi:10.1109/AVSS.2003.1217942

Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching and mutual information. … Vision and Pattern Recognition, 2005. CVPR …. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467526

Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328–41. doi:10.1109/TPAMI.2007.1166

Hirschmüller, H. (2011). Semi-Global Matching Motivation, Developments and Applications. Photogrammetric Week, 173–184. Retrieved from http://www.robotic.dlr.de/fileadmin/robotic/hirschmu/pw2011hh.pdf

Hirschmüller, H., & Bucher, T. (2010). Evaluation of digital surface models by semi-global matching. DGPF Tagungsband. Retrieved from http://www.ifp.uni-stuttgart.de/dgpf/wien/5-HirschmuellerBucher-SemiGlobalMatching.pdf

Höhle, J. (2011). On the potential of new digital aerial cameras for DEM generation. The Photogrammetric Journal of Finland, 22(2), 27–36. Retrieved from http://foto.hut.fi/seura/julkaisut/pjf/pjf_e/2011/PJF2011_Hohle.pdf

ISPRS. (2004). Approved resolutions of the XXth ISPRS Congress - Istanbul 2004. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XXXV, p. 40). Istanbul, Turkey.

Juan, L., & Gwun, O. (2009). A comparison of sift, pca-sift and surf. Internat

ional Journal of Image Processing (IJIP), 3(4), 143–152. Retrieved from http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue4/IJIP-5

pdf

Junqing, C., Zongjian, L., Xiaojing, W., Yongrong, L., & Acquisition, A. I. (2012). Application of UAV system for low altitude photogrammetry in Shanxi. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(1), 351–354.

Kohoutek, T., & Eisenbeiss, H. (2012). Processing of UAV based range imaging data to generate detailed elevation models of complex natural structures. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(September), 405–410. Retrieved from http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXIX-B1/405/2012/isprsarchives-XXXIX-B1-405-2012.pdf

Lei, R., Fan, D., Ji, S., & Zhai, H. (2008). Theory and Algorithms of DSM generation from multi-line-array images matching. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B4), 337–342. Retrieved from http://www.isprs.org/proceedings/XXXVII/congress/4_pdf/59.pdf

Li, M., Li, D., & Fan, D. (2012). A study on automatic UAV image mosaic method for paroxysmal disaster. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B6), 123–128.

Li, X., Liu, Y., Wang, Y., & Yan, D. (2005). Computing Homography with RANSAC Algorithm: A Novel Method of Registration. In C.-S. Li & M. M. Yeung (Eds.), SPIE 5637 (Vol. 5637, pp. 109–112). doi:10.1117/12.579121

Lingua, A., Marenchino, D., & Nex, F. (2009a). 04 - Performance Analysis of the SIFT Operator for Automatic Feature Extraction and Matching in Photogrammetric Applications. Sensors (Basel, Switzerland), 9(5), 3745–66. doi:10.3390/s90503745

Lingua, A., Marenchino, D., & Nex, F. (2009b). A comparison between “ old and new ” feature extraction and matching techniques in Photogrammetry. RevCAD, Journal of Geodesy and Cadastre, 9, 43–52.

Lingua, A., Marenchino, D., & Nex, F. (2009c). Automatic Digital Surface Model (DSM) generation procedure from images acquired by Unmanned Aerial Systems (UASs). RevCAD, Journal of Geodesy and Cadastre, (9), 53–64.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150–1157. doi:10.1109/ICCV.1999.790410

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91–110. doi:10.1023/B:VISI.0000029664.99615.94

Lucieer, A., Robinson, S., & Turner, D. (2011). Unmanned Aerial Vehicle (UAV) remote sensing for hyperspatial terrain mapping of Antarctic Moss beds based on Structure from Motion (SfM) point clouds. Proceeding of the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, (January 2008), 1–4. Retrieved from http://www.isprs.org/proceedings/2011/ISRSE-34/211104015Final00641.pdf

MarcusUAV. (2014). Personal UAV Systems For Photography, Surveillance and More. Retrieved September 5, 2014, from http://www.marcusuav.com/

Marenchino, D. (2009). Low-cost UAV for the environmental emergency management. Photogrammetric procedures for rapid mapping activities. Ph.D Thesis Politecnico Di Torino, 1–7. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.9625&rep=rep1&type=pdf

Microdrones. (2014). UAV Solutions for Mapping, Unmanned Cargo and Inspection Tasks. Retrieved September 5, 2014, from http://www.microdrones.com/en/home/

Mikolajczyk, K., & Schmid, C. (2005). Performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630. doi:10.1109/TPAMI.2005.188

Mundy, J. L. (1993). The relationship between photogrammetry and computer vision. Integrating Photogrammetric Techniques With Scene Analysis and Machine Vision, 1944 of SP.

Neitzel, F., & Klonowski, J. (2011). Mobile 3D mapping with a low-cost UAV system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII, 1–6. Retrieved from http://143.93.114.105/sites/default/files/public/data/uav-g_neitzel_klonowski.pdf

Nex, F., & Remondino, F. (2013). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1–15. doi:10.1007/s12518-013-0120-x

Niethammer, U., James, M. R. R., Rothmund, S., Travelletti, J., & Joswig, M. (2011). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2–11. doi:10.1016/j.enggeo.2011.03.012

Niethammer, U., Rothmund, S., James, M. R., Travelletti, J., & Joswig, M. (2010). UAV-BASED REMOTE SENSING OF LANDSLIDES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(5), 496–501.

Nizam Tahar, K., & Ahmad, A. (2013). An Evaluation of Fixed Wing and Multi-Rotor UAV Images using Photogrammetric Image Processing. World Academy of Science, Engineering and Technology, 7, 346–350. Retrieved from http://waset.org/publications/11861/an-evaluation-on-fixed-wing-and-multi-rotor-uav-images-using-photogrammetric-image-processing

Pfeifer, N., Glira, P., & Briese, C. (2012). Direct Georeferencing With on Board Navigation Components of Light Weight Uav Platforms. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7(September), 487–492. doi:10.5194/isprsarchives-XXXIX-B7-487-2012

Remondino, F., & Fraser, C. (2006). Digital camera calibration methods: Considerations and comparisons. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 266–272.

Remondino, F., Pizzo, S. Del, Kersten, T. P., & Troisi, S. (2012). Low-Cost and Open-Source Solutions for Automated Image Orientation - A Critical Overview. In Progress in Cultural Heritage Preservation (Vol. 2012, pp. 40–54). Springer Berlin Heidelberg. doi:10.1007/978-3-642-34234-9_5

Romero, A. M., & Cazorla, M. (2009). Comparativa de detectores de caractersticas visuales y su aplicación al SLAM. X Workshop de Agentes Físicos, Septiembre 2009, 55–62. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Comparativa+de+detectores+de+caractersticas+visuales+y+su+aplicaci+´+on+al+SLAM#0

Roncella, R., Re, C., & Forlani, G. (2011). Comparison of two structure and motion strategies. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII, 343–350.

Rosnell, T., & Honkavaara, E. (2012). Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors (Basel, Switzerland), 12(1), 453–480. doi:10.3390/s120100453

Rumpler, M., Wendel, A., & Bischof, H. (2013). Probabilistic Range Image Integration for DSM and True-Orthophoto Generation. In J.-K. Kämäräinen & M. Koskela (Eds.), Image Analysis (Vol. 7944, pp. 533–544). Espoo, Finland: Springer Berlin Heidelberg. doi:10.1007/978-3-642-38886-6_50

Salvo, G., Caruso, L., & Scordo, A. (2014). Urban Traffic Analysis through an UAV. Procedia - Social and Behavioral Sciences, 111, 1083–1091. doi:10.1016/j.sbspro.2014.01.143

Samad, A. M., Kamarulzaman, N., Hamdani, M. A., Mastor, T. A., & Hashim, K. A. (2013). The potential of Unmanned Aerial Vehicle (UAV) for civilian and mapping application. In 2013 IEEE 3rd International Conference on System Engineering and Technology (pp. 313–318). Shah Alam, Malaysia: Ieee. doi:10.1109/ICSEngT.2013.6650191

Sensefly. (2014). Professional Mapping Drones, Flight Planning & Control, Maps and 3D Models. Retrieved September 5, 2014, from https://www.sensefly.com/home.html

Shi, J., Wang, J., & Xu, Y. (2011). Object-Based Change Detection Using Georeferenced Uav Images. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/(1/C22), 177–182. doi:10.5194/isprsarchives-XXXVIII-1-C22-177-2011

Snavely, N., Seitz, S. M., & Szeliski, R. (2007). Modeling the World from Internet Photo Collections. International Journal of Computer Vision, 80(2), 189–210. doi:10.1007/s11263-007-0107-3

Tang, L., Braun, J., & Debitsch, R. (1997). Automatic aerotriangulation — concept, realization and results. ISPRS Journal of Photogrammetry and Remote Sensing, 52(3), 122–131. doi:10.1016/S0924-2716(97)00012-9

Triggs, B., McLauchlan, P., Hartley, R., & Fitzgibbon, A. (1999). Bundle adjustment—a modern synthesis. Vision Algorithms ’99, 1–71. Retrieved from http://link.springer.com/chapter/10.1007/3-540-44480-7_21

Trimble. (2014). Trimble UX5 Aerial Imaging Rover. Retrieved September 5, 2014, from http://www.trimble.com/Survey/ux5.aspx

Turner, D., Lucieer, A., & Wallace, L. (2014). Direct Georeferencing of Ultrahigh-Resolution UAV Imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2738–2745. doi:10.1109/TGRS.2013.2265295

Turner, D., Lucieer, A., & Watson, C. (2012). An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing, 4(12), 1392–1410. doi:10.3390/rs4051392

Udin, W. S., & Ahmad, A. (2011). Calibration of high resolution digital camera using self-calibration bundle adjustment method. In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications (Vol. 1, pp. 137–141). Ieee. doi:10.1109/CSPA.2011.5759859

Udin, W. S., Hassan, A. F., Ahmad, A., & Tahar, K. N. (2012). Digital Terrain Model extraction using digital aerial imagery of Unmanned Aerial Vehicle. 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, 272–275. doi:10.1109/CSPA.2012.6194732

Vallet, J., Panissod, F., Strecha, C., & Tracol, M. (2012). Photogrammetric Performance of an Ultra Light Weight Swinglet “Uav.” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/, 253–258. doi:10.5194/isprsarchives-XXXVIII-1-C22-253-2011

Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sensing, 4(12), 1671–1692. doi:10.3390/rs4061671

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. doi:10.1016/j.geomorph.2012.08.021

Wiggenhagen, M. (2002). Calibration of Digital Consumer Cameras for Photogrammetric Applications. In ISPRS Commission III, Symposium 2002 (p. 6). Graz, Austria.

Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2), 174–190. doi:10.1016/j.biosystemseng.2010.11.010

Xie, F., Lin, Z., Gui, D., & Lin, H. (2012). Study on Construction of 3D Building Based on Uav Images. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B1(September), 469–473. doi:10.5194/isprsarchives-XXXIX-B1-469-2012

Yahyanejad, S., Quaritsch, M., & Rinner, B. (2011). Incremental, orthorectified and loop-independent mosaicking of aerial images taken by micro UAVs. 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE), 137–142. doi:10.1109/ROSE.2011.6058531

Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334.

Zhang, Z. (2004). Camera calibration. In Emerging Topics in Computer Vision (pp. 4–43). Retrieved from http://www.inf.ethz.ch/personal/pomarc/pubs/KangMedioniBook.pdf

Zuliani, M. (2012). RANSAC for Dummies. Retrieved from http://vision.ece.ucsb.edu/~zuliani/Research/RANSAC/RANSAC.shtml

Cómo citar
Escalante Torrado, J. O., Cáceres Jiménez, J. J., & Porras Díaz, H. (2017). Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV. Tecnura, 20(50), 119-140. https://doi.org/10.14483/22487638.11566
Publicado: 2017-02-01