Decision Support Systems (DSS) Applied to the Formulation of Agricultural Public Policies

Sistemas de soporte de decisiones (SSD) aplicados a la formulación de políticas públicas agrarias

  • Juan Manuel Sánchez Céspedes Universidad Distrital Francisco José de Caldas https://orcid.org/0000-0001-9101-2936
  • Juan Pablo Rodríguez Miranda Universidad Distrital Francisco José́ de Caldas
  • Olga Lucia Ramos Sandoval Universidad Militar Nueva Granda
Palabras clave: Decision Support Systems, DSS, Public Policy, Policymaking, Agriculture, Agricultural Sector (en_US)
Palabras clave: Sistemas de Soporte de Decisiones, SDD, Política Pública, Formulación de Políticas, Agricultura, Sector Agrario (es_ES)

Resumen (en_US)

Context: The process of formulating agricultural public policies is very complex due to the large number of variables involved in the process. That is why the development of decision support systems (DSS) help to improve this process. The article reviews the developments that have been made regarding the subject.

Method: The method was to conduct a bibliographic review in several scientific databases, looking for developments of DSS systems applied to the process of formulating agricultural policies. When determining which DSS systems have been developed, a qualitative and descriptive analysis of the systems was carried out.

Resumen (es_ES)

Contexto: El proceso de formulación de políticas públicas agrarias es muy complejo por la gran cantidad de variables que intervienen en el proceso. Por eso el desarrollo de sistemas de soporte de decisiones (SSD) ayudan a mejorar dicho proceso. El artículo revisa los desarrollo que se han realizado con respecto al tema.

Método: El método fue realizar una revisión bibliográfica en varias bases de datos científicas, buscando desarrollos de sistemas SSD aplicados al proceso de formulación de políticas agrarias. Al determinar cuales sistemas SSD se han desarrollado, se procedió a realizar un análisis cualitativo y también descriptivo de los sistemas. 

Resultados: Se encontraron 30 sistemas SSD aplicados a la formulación de políticas agrarias, donde la mayoría están enfocados al proceso de producción agrícola y su relación con el medio ambiente.

Conclusiones: La más relevante es la necesidad de generar sistemas SSD que determinen posibles comportamientos futuros de los interesados, al desarrollar potenciales políticas agrarias. Ajustadas a las características propias de los países ubicados en la zona tropical.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Juan Manuel Sánchez Céspedes, Universidad Distrital Francisco José de Caldas

Magíster en Administración, Especialista en Teleinformática, Ingeniero Electrónico. Profesor Asociado, Universidad Distrital Francisco José́ de Caldas, Facultad de Ingeniería.

Juan Pablo Rodríguez Miranda, Universidad Distrital Francisco José́ de Caldas

Doctor en Ingeniería, Magíster en Ingeniería Ambiental, Magíster en Gestión y Evaluación Ambiental, Ingeniero Sanitario y Ambiental. Profesor Titular, Universidad Distrital Francisco José́ de Caldas, Facultad de  Medio Ambiente y Recursos Naturales, Bogotá D.C., Colombia.

Olga Lucia Ramos Sandoval, Universidad Militar Nueva Granda

Doctor en Ingeniería, Magister en Teleinformatica, Esp. en Instrumentación Electrónica, Ingeniera Electrónica. Profesor Asociado, Universidad Militar Nueva Granda, Facultad Ingeniería, Bogotá

Referencias

Andreu Álvarez, J. (2019). AquaTool – AquaTool. Retrieved December 19, 2019, from https://aquatool.webs.upv.es/aqt/aquatool/

Andreu, J., Pérez, M. A., Paredes, J., & Solera, A. (2009). Participatory analysis of the Jucar-Vinalopo (Spain) water conflict using a decision support system. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, (July), 3230–3236.

Anne, B., Geoffroy, S., Cherel, J., Warot, G., Marie, S., Noël, C. J., … Christophe, S. (2018). Towards an operational methodology to optimize ecosystem services provided by urban soils. Landscape and Urban Planning, 176(April), 1–9. https://doi.org/10.1016/j.landurbplan.2018.03.019

Antonopoulou, E., Karetsos, S. T., Maliappis, M., & Sideridis, A. B. (2010). Web and mobile technologies in a prototype DSS for major field crops. Computers and Electronics in Agriculture, 70(2), 292–301. https://doi.org/10.1016/j.compag.2009.07.024

APSIM. (2019). What is APSIM? - APSIM. Retrieved December 18, 2019, from https://www.apsim.info/apsim-model/

Baudasse, T., & Calderón, C. (2009). Integración comercial del sector agrícola y desigualdad económica en los países en vías de desarrollo. investigación económica, 68(269), 37–72.

Bector, V., & Singh Surendra, G. P. K. (2013). Predicting Tractor Power Requirements Using Decision Support System – A Tool for Farm Machinery Management. Agricultural Engineering Today, 37(1), 7–14.

Berger, T., Schilling, C., Troost, C., & Latynskiy, E. (2010). Knowledge-brokering with agent-based models: Some experiences from irrigation-related research in Chile. Modelling for Environment’s Sake: Proceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, iEMSs 2010, 1(December 2015), 791–800.

Boza, S. (2013). evolución del sector agrícola-ecológico : el caso de Andalucía , España *. Cuadernos de Desarrollo Rural, 10, 291–310. Retrieved December 20, 2019, from http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1&sid=a8d4348e-3680-428d-a77d-48de2a8405ce%40sessionmgr4010

Capra, C. M. (2014). Racionalidad limitada y procesos de decisión. (September).

Cárdenas, J. I., & Vallejo, L. E. (2016). Agricultura y desarrollo rural en Colombia 2011-2013: una aproximación. Apuntes Del Cenes, 35(62), 87–123.

De la Rosa, D., & Anaya-Romero, M. (2010). MicroLEIS DSS: For planning agro-ecological soil use and management systems. En Decision Support Systems in Agriculture, Food and the Environment: Trends, Applications and Advances. https://doi.org/10.4018/978-1-61520-881-4.ch016

Di Guardo, A., & Finizio, A. (2015). A client-server software for the identification of groundwater vulnerability to pesticides at regional level. Science of the Total Environment, 530–531, 247–256. https://doi.org/10.1016/j.scitotenv.2015.05.112

Eckman, B., West, P. C., Barford, C., & Raber, G. (2009). Intuitive simulation, querying, and visualization for river basin policy and management. IBM Journal of Research and Development, 53(3). https://doi.org/10.1147/JRD.2009.5429020

Firbank, Les G; Petit Sandrine, Smart Simon; Blain, Alasdair; Fuller, R. J. (2008). Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Trans. R. Soc. B, 363(1492), 777–787. https://doi.org/http://doi.org/10.1098/rstb.2007.2183

Fraisse, C. W., Breuer, N. E., Zierden, D., Bellow, J. G., Paz, J., Cabrera, V. E., … O’Brien, J. J. (2006). AgClimate: A climate forecast information system for agricultural risk management in the southeastern USA. Computers and Electronics in Agriculture, 53(1), 13–27. https://doi.org/10.1016/j.compag.2006.03.002

Francesconi, W., Pérez Miñana, E., Willcock, S. P., Villa, F., & Quintero, M. (2015). Linking ecosystem services to food security in a changing planet: assessing Peruvian Amazon deforestation using the Artificial Intelligence for Ecosystem Services (ARIES) framework. ASABE 1st Climate Change Symposium: Adaptation and Mitigation Proceedings of the 3-5 May 2015 Conference. Chicago Illinois, USA.

Garin, G., Houlès, V., & Jallas, E. (2013). Assembly of a model for grapevine powdery mildew in a decision support system and search for evaluation criteria. Precision agriculture ’13, 525–531. https://doi.org/10.3920/978-90-8686-778-3

Gómez, P. P. (2016). Evaluación de la política pública de reforma agraria en Colombia (1991 – 2010): Estudios de caso en seis municipios del país (Universidad Nacional de Colombia Facultad). Retrieved December 22, 2019, from http://www.bdigital.unal.edu.co/53481/

Guanziroli, C. E. (2014). Evolución de la Política Agrícola Brasileña: 1980-2010. Mundo Agrário, 15(29), 1–33. Retrieved December 23, 2019, from http://www.mundoagrario.unlp.edu.ar/

Huang, X., & Zhu, Y. (2009). Study on web-based tool for regional agriculture industry structure optimization using Ajax. IFIP Advances in Information and Communication Technology, 295, 1543–1550. https://doi.org/10.1007/978-1-4419-0213-9_3

Huy, M. Q. (2009). Building a Decision Support System for Agricultural Land Use Planning and Sustainable Management at the District Level in Vietnam. Elements.

Lal, R. (2012). Climate Change and Soil Degradation Mitigation by Sustainable Management of Soils and Other Natural Resources. Agricultural Research, 1(3), 199–212. https://doi.org/10.1007/s40003-012-0031-9

Leng, Z. X., & Haimid, Y. (2009). Environmental decision support system development for soil salinization in the arid area oasis. 2008 International Seminar on Business and Information Management, ISBIM 2008, 1, 449–452. https://doi.org/10.1109/ISBIM.2008.242

Li, Y. X., Tullberg, J. N., Freebairn, D. M., McLaughlin, N. B., & Li, H. W. (2008). Effects of tillage and traffic on crop production in dryland farming systems: I. Evaluation of PERFECT soil-crop simulation model. Soil and Tillage Research, 100(1–2), 15–24. https://doi.org/10.1016/j.still.2008.04.004

Morales, S. L., Morales, M. R., & Rizo, R. (2017). Metodología para Procesos de Inteligencia de Negocios con mejoras en la extracción y transformación de fuentes de Datos. Revista Publicando, 4(11), 107–119. Retrieved December 27, 2019, from http://rmlconsultores.com/revista/index.php/crv/article/view/553/pdf_364

Morgan, S. L., Marsden, T., Miele, M., & Morley, A. (2010). Agricultural multifunctionality and farmers’ entrepreneurial skills: A study of Tuscan and Welsh farmers. Journal of Rural Studies, 26(2), 116–129. https://doi.org/10.1016/j.jrurstud.2009.09.002

Musakwa, W., Makoni, E. N., Kangethe, M., & Segooa, L. (2014). Developing a decision support system to identify strategically located land for land reform in South Africa. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(2), 197–203. https://doi.org/10.5194/isprsarchives-XL-2-197-2014

Nouiri, I., Yitayew, M., Maßmann, J., & Tarhouni, J. (2015). Multi-objective Optimization Tool for Integrated Groundwater Management. Water Resources Management, 29(14), 5353–5375. https://doi.org/10.1007/s11269-015-1122-8

Ospina, D. M. (2017). Reivindicando al campesinado en Colombia: Análisis de las fallas de redistribución y de reconocimiento en la implementación de las Política Agrarias de los Siglos XX - XXI, y en la Política Pública de Víctimas y Restitución de Tierras.

Programa de las Naciones Unidas para el Desarrollo (PNUD). (2019). Objetivos de Desarrollo Sostenible | PNUD. Retrieved October 15, 2019, from https://www.undp.org/content/undp/es/home/sustainable-development-goals.html

Río, M., Franco-Uría, A., Abad, E., & Roca, E. (2011). A risk-based decision tool for the management of organic waste in agriculture and farming activities (FARMERS). Journal of Hazardous Materials, 185(2–3), 792–800. https://doi.org/10.1016/j.jhazmat.2010.09.090

Rodríguez Espinosa, H., Ramírez Gómez, C. J., & Restrepo-Betancur, L. F. (2016). Análisis Comparativo De La Dinámica De Desarrollo Agrícola En Suramérica En El Período 1980-2010. Luna Azul, (42), 15–29. https://doi.org/10.17151/luaz.2016.42.3

Roetter, R. P., Hoanh, C. T., Laborte, A. G., Van Keulen, H., Van Ittersum, M. K., Dreiser, C., … Van Laar, H. H. (2005). Integration of Systems Network (SysNet) tools for regional land use scenario analysis in Asia. Environmental Modelling and Software, 20(3), 291–307. https://doi.org/10.1016/j.envsoft.2004.01.001

Salazar, M. R., Hook, J. E., Garcia y Garcia, A., Paz, J. O., Chaves, B., & Hoogenboom, G. (2012). Estimating irrigation water use for maize in the Southeastern USA: A modeling approach. Agricultural Water Management, 107, 104–111. https://doi.org/10.1016/j.agwat.2012.01.015

Sánchez, V., Rincón, M. A. R., & Lugo, L. J. (2013). Imaginarios Rurales Y Agropecuarios Y Políticas Agrarias En El Departamento Del Caquetá, Colombia. Ingenierías & Amazonia, 6(1), 37–46.

Sánchez C., J. M., Rodriguez M., J. P., & Montenegro M., C. E. (2020). La relevancia de la variabilidad climática en la formulación de políticas públicas agrarias en los países tropicales. Revista ESPACIOS, 41(8), 11.

Sharpley, A. N., & Williams, J. R. (1990). EPIC: The erosion-productivity impact calculator. U.S. Department of Agriculture Technical Bulletin, (1768), 235. Retrieved December 29, 2019, from http://agris.fao.org/agris-search/search.do?recordID=US9403696

Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C. (2002). Past, present, and future of decision support technology. Decision Support Systems, 33(2), 111–126. https://doi.org/10.1016/S0167-9236(01)00139-7

Soto, C. (2003). La agricultura comercial de los distritos de riego en México y su impacto en el desarrollo agrícola. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM, (50), 173–195.

Stöckle, C. O., Nelson, R., & Kemanian, A. (2019). CS_Suite - CropSyst. Retrieved December 18, 2019, from http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html

Suárez, J. (2015). Producción integrada de alimentos y energía a escala local en Cuba: bases para un desarrollo sostenible. Pastos y Forrajes, 38(1), 3–10.

Tayyebi, A., Arsanjani, J. J., Tayyebi, A. H., Omrani, H., & Moghadam, H. S. (2016). Group-based crop change planning: Application of SmartScapeTM spatial decision support system for resolving conflicts. Ecological Modelling, 333, 92–100. https://doi.org/10.1016/j.ecolmodel.2016.04.018

Temprano, A. G. (2013). Política agraria común y la de cohesión frente a la Estrategia Europa 2020. Problemas del Desarrollo, 44(173), 105–132. Retrieved December 27, 2019, from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875383047&partnerID=40&md5=e9b3b6b63fcc3937b1753af07d6e8896

UN. (2015). Water and sanitation - Sustainable Development. Retrieved October 16, 2020, from United Nations website: https://www.un.org/sustainabledevelopment/es/water-and-sanitation/

UN. (2017). Sustainable consumption and production - Sustainable Development. Retrieved October 16, 2020, from Sustainable Development Goals website: https://www.un.org/sustainabledevelopment/es/sustainable-consumption-production/

UN. (2019a). Climate change - Sustainable Development. Retrieved October 16, 2020, from Sustainable Development Goals website: https://www.un.org/sustainabledevelopment/es/climate-change-2/

UN. (2019b). Hunger and food security - Sustainable Development. 2019. Retrieved from https://www.un.org/sustainabledevelopment/es/hunger/

UN. (2020). Poverty - Sustainable Development. Retrieved October 16, 2020, from Sustainable Development Goals website: https://www.un.org/sustainabledevelopment/es/poverty/

United Nations Development Program (UNDP). (2019). Sustainable Development Goals | PNUD. Retrieved June 24, 2019, from https://www.undp.org/content/undp/es/home/sustainable-development-goals.html

Van Delden, H. (2009). Integration of socio-economic and bio-physical models to support sustainable development. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, (July), 2457–2463.

Van Delden, H., Kirkby, M. J., & Hahn, B. M. (2009). Towards a modelling framework for integrated assessment in arid and semi-arid regions. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, (July), 3563–3569.

Van Delden, Hedwig, Stuczynski, T., Ciaian, P., Paracchini, M. L., Hurkens, J., Lopatka, A., … Vanhout, R. (2010). Integrated assessment of agricultural policies with dynamic land use change modelling. Ecological Modelling, 221(18), 2153–2166. https://doi.org/10.1016/j.ecolmodel.2010.03.023

Van Leeuwen, W., Hutchinson, C., Drake, S., Doorn, B., Kaupp, V., Haithcoat, T., … Tralli, D. (2011). Benchmarking enhancements to a decision support system for global crop production assessments. Expert Systems with Applications, 38(7), 8054–8065. https://doi.org/10.1016/j.eswa.2010.12.145

Vargas, D., Boada, M., Araca, L., Vargas, W., & Vargas, R. (2016). Sostenibilidad de modos ancestrales de producción agrícola en el Perú: ¿conservar o sustituir? Mundo Agrario, 17(35), 10. Retrieved December 29, 2019, from http://www.mundoagrario.unlp.edu.ar/article/view/MAe023

Vergara Varela, R. (2016). Modelos de Toma de Decisión: Anarquía-Isomorfismos-Psicoanálisis.

Wolfe, M. L., & Richard, T. L. (2017). 21St Century Engineering for on-Farm Food–Energy–Water Systems. Current Opinion in Chemical Engineering, 18 (November), 69–76. https://doi.org/10.1016/j.coche.2017.10.005

Wong, I., Fong, P., Booty, W. G., Nielsen, C., Benoy, G., & Swayne, D. A. (2008). The land and water integration decision support system. 14th Americas Conference on Information Systems, AMCIS 2008, 1, 516–522.

World Food Programme. (2020). 2020 - Global Report on Food Crises | World Food Programme. Retrieved October 16, 2020, from https://www.wfp.org/publications/2020-global-report-food-crises

Zaman, A. M., Rahman, S. M. M., & Khan, M. R. (2009). Development of a DSS for Integrated Water Resources Management in Bangladesh. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, (July), 2756–2762.

Zeman, K. R., & Rodríguez, L. F. (2019). Quantifying farmer decision-making in an agent-based model. 2019 ASABE Annual International Meeting.

Cómo citar
Sánchez Céspedes, J. M., Rodríguez Miranda, J. P., & Ramos Sandoval, O. L. (2020). Sistemas de soporte de decisiones (SSD) aplicados a la formulación de políticas públicas agrarias. Tecnura, 24(66), 95 - 108. https://doi.org/10.14483/22487638.15768
Publicado: 2020-10-01