Imagen citada en el artículo

DOI:

https://doi.org/10.14483/22487638.18612

Publicado:

2023-07-12

Número:

Vol. 27 Núm. 76 (2023): Abril - Junio

Sección:

Investigación

Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados

Straightforward Construction Activities Developed by Unmanned Aerial Systems

Autores/as

  • Yeyson Becerra Corporación Unificada Nacional de Educación Superior (CUN) https://orcid.org/0000-0002-6718-4962
  • Dante Giovanni Sterpin Buitrago Corporación Unificada Nacional de Educación Superior (CUN)

Palabras clave:

robotics, UAV, UAS, construction, assembly (en).

Palabras clave:

robótica, UAV, UAS, construcción, ensamblaje (es).

Descargas

Resumen (es)

Contexto: Los vehículos aéreos no tripulados (UAV, por sus siglas en inglés) han tomado gran relevancia en los últimos años, al integrarse en diversos sectores de la economía, como el agrícola, energético, público, construcción, entre otros. Precisamente, en este último sector, se han venido realizando avances que permiten la manipulación, transporte e identificación de elementos propios del sector, así como la cooperación entre distintos robots aéreos o robots terrestres para solucionar el problema de límite de carga, asociado a los UAV.

Método: Este trabajo está dividido en cuatro categorías en las que los UAV y los sistemas aéreos no tripulados (UAS, por su sigla en inglés) han aportado al desarrollo de actividades de construcción de forma autónoma. Se realiza una búsqueda exhaustiva mediante Google Scholar empleando palabras claves tales como “UAV”, “robotics”, “UAS”, “construction”, “cooperation”, “architecture” y “assembly”, las cuales permiten identificar trabajos desarrollados en este campo. En la búsqueda se realiza combinaciones entre las distintas palabras con el fin de reducir el amplio panorama que se presenta al utilizar tan solo una de ellas.

Resultados: Se obtiene un panorama de diversos sistemas aéreos no tripulados que ejecutan tareas simples que conlleven la automatización del sector de la construcción; en ese sentido, se enumeran las características, virtudes y limitantes actuales de estos sistemas, así como, los desafíos que se proponen a futuro.

Conclusiones: El mercado actual de UAV está orientado principalmente a sistemas teleoperados; sin embargo, centros de investigación han venido desarrollando UAV y UAS más autónomos. La baja capacidad de carga de estos sistemas ha sido compensada con la cooperación entre robots aéreos, terrestres e, inclusive, humanos. Dicha cooperación exige la creación de algoritmos que coordinen todos los agentes que intervienen en el sistema. Se deben tener en cuenta las condiciones del entorno de construcción, así como, la precisión y estabilidad de estos sistemas.

Resumen (en)

Context: Unmanned aerial vehicles (UAV) have become very important in recent years, integrating these robots into various sectors of the economy, such as agriculture, energy, public, construction, among others; precisely in this last mentioned sector (construction), advances have been made, allowing the manipulation, transport and identification of building elements, as well as cooperation between different aerial robots and/or ground robots to solve the payload limit problem, associated with UAVs.

Method: This paper is divided into four categories where UAVs and UAS have been contributing to the development of construction activities autonomously. The first category presents works in which UAS build modular architectural structures; the second category exposes works in which UAVs are equipped with robotic arms to perform manipulation tasks; the third category presents works of cooperation between aerial robots and robots; finally, the fourth category presents unmanned aerial systems for payload transportation.

Method: This paper is divided into four categories where UAVs and UAS have been contributing to the development of construction activities autonomously. An exhaustive search is carried on through Google Scholar using keywords such as UAV, robotics, UAS, construction, cooperation, architecture and assembly; which allow identifying developed works in this field. Combinations among the different keywords are accomplished in order to reduce the obtained extensive results of using only one of them.

Results: An overview of various unmanned aerial systems is obtained by performing simple tasks that lead to the automation of the construction sector. The current characteristics, virtues

and limitations of these systems are shown, as well as the challenges that are proposed for the future.

Conclusions: The current market for UAVs is mainly oriented towards teleoperated systems; however, research centers have been developing more autonomous UAVs and UASs. The low payload capacity of these systems has been compensated with the cooperation between aerial, terrestrial and even human robots. This same cooperation requires the creation of algorithms that coordinate all the agents that intervene in the system. The conditions of the construction environment must be taken into account, as well as the precision and stability of these systems.

Biografía del autor/a

Yeyson Becerra, Corporación Unificada Nacional de Educación Superior (CUN)

Ingeniero en Automatización, máster en Automática y Robótica. Docente de la Corporación Unificada Nacional de Educación Superior (CUN). Bogotá, Colombia.

Dante Giovanni Sterpin Buitrago, Corporación Unificada Nacional de Educación Superior (CUN)

Ingeniero electrónico, máster en Ingeniería de Sistemas y Computación. Docente de la Corporación Unificada Nacional de Educación Superior (CUN). Bogotá, Colombia.

Referencias

Agarwal, R., Chandrasekaran, S. y Sridhar, M. (2016). Imagining construction’s digital future. McKinsey & Company. https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future#.

Asadi, K., Suresh, A., Ender, A., Gotad, S., Maniyar, S., Anand, S., Noghabaei, M., Han, K., Lobaton, E. y Wu, T. (2020). An integrated UGV-UAV system for construction site data collection. Automation in Construction, 112, 103068. https://doi.org/10.1016/j.autcon.2019.103068. DOI: https://doi.org/10.1016/j.autcon.2019.103068

Augugliaro, F., Zarfati, E., Mirjan, A. y D'Andrea, R. (2015). Knot-tying with flying machines for aerial construction. En 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (pp. 5917-5922). https://doi.org/10.1109/IROS.2015.7354218. DOI: https://doi.org/10.1109/IROS.2015.7354218

Augugliaro, F., Mirjan, A., Gramazio, F., Kohler, M. y D'Andrea, R. (2013). Building tensile structures with flying machines. En 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3487-3492). https://doi.org/10.1109/IROS.2013.6696853. DOI: https://doi.org/10.1109/IROS.2013.6696853

Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M. W., Willmann, J. S., Gramazio, F., Kohler, M. y D’Andrea, R. (2014). The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control Systems Magazine, 34, 4, 46-64. https://doi.org/10.1109/MCS.2014.2320359. DOI: https://doi.org/10.1109/MCS.2014.2320359

Becerra, Y. A. (2020). Una revisión de plataformas robóticas para el sector de la construcción. Tecnura, 24(63), 115-132. https://doi.org/10.14483/22487638.15384. DOI: https://doi.org/10.14483/22487638.15384

Becerra, Y. A. y Arbulú, M. R. (2022). Uso de robótica en una emergencia sanitaria. Tecnura, 26(73), 130-141. https://doi.org/ 10.14483/22487638.17320. DOI: https://doi.org/10.14483/22487638.17320

Caraballo, L. E., Díaz-Báñez, J. M., Maza, I. y Ollero, A. (2017). The block-information-sharing strategy for task allocation: A case study for structure assembly with aerial robots. European Journal of Operational Research, 260(2), 725-738. https://doi.org/10.1016/j.ejor.2016.12.049. DOI: https://doi.org/10.1016/j.ejor.2016.12.049

Chermprayong, P., Zhang, K., Xiao, F. y Kovac, M. (2019). An integrated delta manipulator for aerial repair: A new aerial robotic system. IEEE Robotics & Automation Magazine, 26, 1, 54-66. https://doi.org/10.1109/MRA.2018.2888911. DOI: https://doi.org/10.1109/MRA.2018.2888911

Cruz, P. J. y Fierro, R. (2017). Cable-suspended load lifting by a quadrotor UAV: Hybrid model, trajectory generation, and control. Autonomous Robots, 41, 1629-1643. https://doi.org/10.1007/s10514-017-9632-2. DOI: https://doi.org/10.1007/s10514-017-9632-2

Felbrich, B., Frueh, N., Prado, M., Saffarian, S., Solly, J., Vasey, L., Knippers, J. y Menges, A. (2017). Multi-machine fabrication: An integrative design process utilising an autonomous UAV and industrial robots for the fabrication of long span composite structures. En Disciplines & Disruption, ACADIA (Association for Computer Aided Design in Architecture) (pp. 248-259). MIT. http://doi.org/10.5281/zenodo.2667782. DOI: https://doi.org/10.52842/conf.acadia.2017.248

Gabrich, B., Saldaña, D., Kumar, V. y Yim, M. (2018). A flying gripper based on cuboid modular robots. En 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7024-7030). https://doi.org/10.1109/ICRA.2018.8460682. DOI: https://doi.org/10.1109/ICRA.2018.8460682

Gassner, M., Cieslewski, T. y Scaramuzza, D. (2017). Dynamic collaboration without communication: Vision-based cable-suspended load transport with two quadrotors. En 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5196-5202). https://doi.org/10.1109/ICRA.2017.7989609. DOI: https://doi.org/10.1109/ICRA.2017.7989609

Goessens, S., De Furstenberg, T., Manderlier, C., Mueller, C. y Latteur, P. (2017). A few aspects of timber UAV-based Construction. En Intefaces: Architecture, Engineering, Science (IASS) Annual Symposium. Hamburgo, Alemania.

Goessens, S., Mueller, C. y Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. Automation in Construction, 94, 458-480. https://doi.org/10.1016/j.autcon.2018.06.015. DOI: https://doi.org/10.1016/j.autcon.2018.06.015

Hunt, G., Mitzalis, F., Alhinai, T., Hooper, P. A. y Kovac, M. (2014). 3D printing with flying robots. En 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4493-4499). https://doi.org/10.1109/ICRA.2014.6907515. DOI: https://doi.org/10.1109/ICRA.2014.6907515

Jiménez-Cano, A. E., Heredia, G. y Ollero, A. (2017). Aeria manipulator with a compliant arm for bridge inspection. En 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1217-1222). https://doi.org/10.1109/ICUAS.2017.7991458. DOI: https://doi.org/10.1109/ICUAS.2017.7991458

Jiménez-Cano, A. E., Martin, J., Heredia, G., Ollero, A. y Cano, R. (2013). Control of an aerial robot with multi-link arm for assembly tasks. En 2013 IEEE International

Conference on Robotics and Automation (ICRA) (pp. 4916-4921). https://doi.org/10.1109/ICRA.2013.6631279. DOI: https://doi.org/10.1109/ICRA.2013.6631279

Kim, S., Seo, H., Choi, S. y Kim, H. J. (2016). Vision-guided aerial manipulation using a multirotor with a robotic arm. IEEE/ASME Transactions on Mechatronics, 21(4), 1912-1923. https://doi.org/10.1109/TMECH.2016.2523602. DOI: https://doi.org/10.1109/TMECH.2016.2523602

Kim, S., Seo, H., Shin, J. y Kim, H. J. (2018). Cooperative aerial manipulation using multirotors with multi-DOF robotic arms. IEEE/ASME Transactions on Mechatronics, 23(2), 702-713. https://doi.org/10.1109/TMECH.2018.2792318. DOI: https://doi.org/10.1109/TMECH.2018.2792318

Kiribayashi, S., Yakushigawa, K. y Nagatani, K. (2018). Design and Development of Tether-Powered Multirotor Micro Unmanned Aerial Vehicle System for Remote-Controlled Construction Machine. En M. Hutter y R. Siegwart (eds.), Field and service robotics (pp. 637-648). Springer. https://doi.org/10.1007/978-3-319-67361-5_41. DOI: https://doi.org/10.1007/978-3-319-67361-5_41

Kondak, K., Huber, F., Schwarzbach, M., Laiacker, M., Sommer, D., Bejar, M. y Ollero, A. (2014). Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator. En 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2107-2112). https://doi.org/10.1109/ICRA.2014.6907148. DOI: https://doi.org/10.1109/ICRA.2014.6907148

Krizmancic, M., Arbanas, B., Petrovic, T., Petric, F. y Bogdan, S. (2020). Cooperative aerial-ground multi-robot system for automated construction tasks. IEEE Robotics and Automation Letters, 5(2), 798-805. https://doi.org/10.1109/LRA.2020.2965855. DOI: https://doi.org/10.1109/LRA.2020.2965855

Lallement, R., Cortés, J., Gharbi, M., Boeuf, A., Alami, R., Fernandez-Aguera, C. J. y Maza, I. (2019). Combining assembly planning and geometric task planning. En A. Ollero y B. Siciliano (eds.), Aerial robotic manipulation (pp. 299-316). Springer. https://doi.org/10.1007/978-3-030-12945-3_22. DOI: https://doi.org/10.1007/978-3-030-12945-3_22

Lindsey, Q. y Kumar, V. (2013). Distributed construction of truss structures. En E. Frazzoli, T. Lozano-Pérez, N. Roy y D. Rus (eds.), Algorithmic foundations of robotics X (pp. 209-225). Springer Verlag. https://doi.org/10.1007/978-3-642-36279-8_13. DOI: https://doi.org/10.1007/978-3-642-36279-8_13

Lindsey, Q., Mellinger, D. y Kumar, V. (2011). Construction of cubic structures with quadrotor teams. En H. Durrant-Whyte, N. Roy y P. Abbeel (eds.). Robotics: Science and systems VII (pp. 177-184). MIT Press. DOI: https://doi.org/10.7551/mitpress/9481.003.0028

Marina, H. G. y Smeur, E. (2019). Flexible collaborative transportation by a team of rotorcraft. En 2019 International Conference on Robotics and Automation (ICRA) (pp. 1074-1080). https://doi.org/10.1109/ICRA.2019.8794316. DOI: https://doi.org/10.1109/ICRA.2019.8794316

Masone, C., Bülthoff, H. H. y Stegagno, P. (2016). Cooperative transportation of a payload using quadrotors: A reconfigurable cable-driven parallel robot. En 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1623-1630). https://doi.org/10.1109/IROS.2016.7759262. DOI: https://doi.org/10.1109/IROS.2016.7759262

Maxim, A., Lerke, O., Prado, M., Dorstelmann, M., Menges, A. y Schwieger, V. (2017). UAV Guidance with robotic total station for architectural fabrication processes. En A. Hassan (ed.), Unmanned aerial vehicles 2017 (pp. 145-161). Wißner-Verlag.

Mellinger, D., Shomin, M., Michael, N. y Kumar, V. (2013). Cooperative grasping and transport using multiple quadrotors. En A. Martinoli et al. (eds.), Distributed autonomous robotic systems (pp. 545-558). Springer. https://doi.org/10.1007/978-3-642-32723-0_39. DOI: https://doi.org/10.1007/978-3-642-32723-0_39

Michael, N., Fink, J. y Kumar, V. (2011). Cooperative manipulation and transportation with aerial robots. Autonomous Robots – AROBOTS, 30, 73-86. https://doi.org/10.1007/s10514-010-9205-0. DOI: https://doi.org/10.1007/s10514-010-9205-0

Mirjan, A., Gramazio, F., Kohler, M., Augugliaro, F. y D’Andrea, R. (2013). Architectural fabrication of tensile structures with flying machines. En T. Ferreira (eds), Green design, materials and manufacturing processes (pp. 513-518). CRC Press. DOI: https://doi.org/10.1201/b15002-99

Mirjan, A., Augugliaro, F., D’Andrea, R., Gramazio, F. y Kohler, M. (2016). Building a Bridge with Flying Robots. En D. Reinhardt, R. Saunders y J. Burry (eds.), Robotic fabrication in architecture, art and design 2016 (pp. 34-47). Springer. https://doi.org/10.1007/978-3-319-26378-6_3. DOI: https://doi.org/10.1007/978-3-319-26378-6_3

Muñoz-Morera, J., Maza, I., Fernández-Aguera, C.J., Caballero, F. y Ollero, A. (2015). Assembly planning for the construction of structures with multiple UAS equipped with robotic arms. En 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1049-1058). https://doi.org/10.1109/ICUAS.2015.7152396. DOI: https://doi.org/10.1109/ICUAS.2015.7152396

Nguyen, T., Catoire, L. y Garone, E. (2019). Control of a quadrotor and a ground vehicle manipulating an object. Automatica, 105, 384-390. https://doi.org/10.1016/j.automatica.2019.04.011. DOI: https://doi.org/10.1016/j.automatica.2019.04.011

Ollero, A. (11 de octubre de 2012). Aerial robotics cooperative assembly system (ARCAS): First results. Aerial Physically Acting Robots (AIRPHARO) [Workshop]. International Conference on Robotics (IROS), Vilamoura, Portugal.

OxfordEconomics.com. (2021). Future of construction: A global forecast for construction to 2030. https://www.oxfordeconomics.com/resource/future-of-construction/.

Pietri, S. y Erioli, A. (2017). Fibrous aerial robotics. En 35th International Conference on Education and Research in Computer Aided Architectural Design in Europe/Design Tools – Robotics, 1, 689-698).

Ritz, R. y D'Andrea, R. (2013). Carrying a flexible payload with multiple flying vehicles. En 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3465-3471). https://doi.org/10.1109/IROS.2013.6696850. DOI: https://doi.org/10.1109/IROS.2013.6696850

Sanalitro, D., Savino, H. J., Tognon, M., Cortés, J. y Franchi, A. (2020). Full-pose manipulation control of a cable-suspended load with multiple UAVs under uncertainties. IEEE Robotics and Automation Letters, 5(2), 2185-2191. https://doi.org/10.1109/LRA.2020.2969930. DOI: https://doi.org/10.1109/LRA.2020.2969930

Staub, N., Bicego, D., Sablé, Q., Arellano-Quintana, V., Mishra, S. y Franchi, A. (2018). Towards a flying assintant paradigm: The OTHex. En 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6997-7002). http://doi.org/10.1109/ICRA.2018.8460877. DOI: https://doi.org/10.1109/ICRA.2018.8460877

Staub, N., Mohammadi, M., Bicego, D., Delamare, Q., Yang, H., Prattichizzo, D., Giordano, P. R., Lee, D. y Franchi, A. (2018). The Tele-MAGMaS: An aerial-ground comanipulator system. IEEE Robotics & Automation Magazine, 25(4), 66-75. http://doi.org/10.1109/MRA.2018.2871344. DOI: https://doi.org/10.1109/MRA.2018.2871344

Tagliabue, A., Kamel, M., Verling, S., Siegwart, R. y Nieto, J. (2017). Collaborative transportation using MAVs via passive force control. En 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5766-5773). https://doi.org/10.1109/ICRA.2017.7989678. DOI: https://doi.org/10.1109/ICRA.2017.7989678

Tagliabue, A., Kamel, S., Siegwart, R. y Nieto, J. (2019). Robust collaborative object transportation using multiple MAVs. The International Journal of Robotics Research, 38(9), 1020-1044. https://doi.org/10.1177/0278364919854131. DOI: https://doi.org/10.1177/0278364919854131

Tan, Y. H., Lai, S., Wang, K. y Chen, B.M. (2018). Cooperative control of multiple unmanned aerial systems for heavy duty carrying. Annual Review in Control, 46, 44-57. https://doi.org/10.1016/j.arcontrol.2018.07.001. DOI: https://doi.org/10.1016/j.arcontrol.2018.07.001

Thapa, S., Bai, H. y Acosta, J. A. (2019). Cooperative aerial manipulation with decentralized adaptive force-consensus control. Journal of Intelligent and Robotic Systems, 97, 171-183. https://doi.org/10.1007/s10846-019-01048-4. DOI: https://doi.org/10.1007/s10846-019-01048-4

Cómo citar

APA

Becerra, Y., y Sterpin Buitrago, D. G. (2023). Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados. Tecnura, 27(76), 12–30. https://doi.org/10.14483/22487638.18612

ACM

[1]
Becerra, Y. y Sterpin Buitrago, D.G. 2023. Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados. Tecnura. 27, 76 (jul. 2023), 12–30. DOI:https://doi.org/10.14483/22487638.18612.

ACS

(1)
Becerra, Y.; Sterpin Buitrago, D. G. Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados. Tecnura 2023, 27, 12-30.

ABNT

BECERRA, Yeyson; STERPIN BUITRAGO, Dante Giovanni. Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados. Tecnura, [S. l.], v. 27, n. 76, p. 12–30, 2023. DOI: 10.14483/22487638.18612. Disponível em: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18612. Acesso em: 1 may. 2024.

Chicago

Becerra, Yeyson, y Dante Giovanni Sterpin Buitrago. 2023. «Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados». Tecnura 27 (76):12-30. https://doi.org/10.14483/22487638.18612.

Harvard

Becerra, Y. y Sterpin Buitrago, D. G. (2023) «Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados», Tecnura, 27(76), pp. 12–30. doi: 10.14483/22487638.18612.

IEEE

[1]
Y. Becerra y D. G. Sterpin Buitrago, «Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados», Tecnura, vol. 27, n.º 76, pp. 12–30, jul. 2023.

MLA

Becerra, Yeyson, y Dante Giovanni Sterpin Buitrago. «Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados». Tecnura, vol. 27, n.º 76, julio de 2023, pp. 12-30, doi:10.14483/22487638.18612.

Turabian

Becerra, Yeyson, y Dante Giovanni Sterpin Buitrago. «Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados». Tecnura 27, no. 76 (julio 12, 2023): 12–30. Accedido mayo 1, 2024. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18612.

Vancouver

1.
Becerra Y, Sterpin Buitrago DG. Actividades de construcción sencillas desarrolladas por sistemas aéreos no tripulados. Tecnura [Internet]. 12 de julio de 2023 [citado 1 de mayo de 2024];27(76):12-30. Disponible en: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18612

Descargar cita

Visitas

14

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.
Loading...