
DOI:
https://doi.org/10.14483/22487638.20411Publicado:
01-09-2024Número:
Vol. 28 Núm. 81 (2024): Julio - SeptiembreSección:
InvestigaciónSignal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation
Calidad de la señal de un transceptor SDR de banda ancha al variar la desviación de frecuencia
Palabras clave:
broadband frequency modulation, GNU radio, modulation rate, signal quality, software-defined radio (en).Palabras clave:
modulación de frecuencia de banda ancha, radio GNU, tasa de modulación, calidad de la señal, radio definida por software (es).Descargas
Resumen (en)
This study examines the quality of an audio signal received via a Software-Defined Radio (SDR) peripheral
for Wideband Frequency Modulation (WBFM). The objective is to evaluate the impact of varying the maximum
frequency deviations of the modulator, through the WBFM transmit block, on audio quality. Tests were conducted
in an open space at a fixed distance of 50 meters using a chirp signal and an audio file in .WAV format as
messages. Signal quality was evaluated using the RMAA 6.1.4 Right Mark Audio Analyzer and SDR# spectrum
analyzer, with a 16-bit resolution and a 96 kHz sampling rate. Key performance parameters included: total harmonic
distortion (THD), peak power (Pp), frequency response (RF), and signal-to-noise ratio (SNR). Results indicate
high-quality reception under specific conditions: THD ≤ 2 %, Pp ≥ 2.7 dBFS, RF at 13 kHz, and SNR ≥ 39 dB. Optimal
performance was observed with a frequency deviation of 75 kHz, highlighting HackRF One’s suitability for
WBFM transmission. This work demonstrates SDR’s flexibility in modulating and demodulating signals, providing a low-cost and efficient alternative for audio transmission. The study was funded by the Escuela Colombiana de Ingeniería Julio Garavito under code PRY18, 2018-1.
Resumen (es)
Este estudio analiza la calidad de una señal de audio recibida en un periférico de radio definido por software
(SDR) para aplicaciones de modulación de frecuencia de banda ancha (WBFM). El objetivo es evaluar el impacto
que tiene la variación de las desviaciones máximas de frecuencia del modulador, a través del bloque de transmisión WBFM, en la calidad de la señal. Las pruebas se realizaron en un espacio abierto a una distancia fija de 50 metros, utilizando una señal chirp y un archivo de audio en formato .WAV como mensajes. Se emplearon los programas RMAA 6.1.4 Right Mark Audio Analyzer y SDR# spectrum analyzer con resolución de 16 bits y frecuencia de muestreo de 96 kHz para evaluar los parámetros: distorsión armónica total (THD), potencia pico (Pp), respuesta en frecuencia (RF) y relación señal/ruido (SNR). Los resultados demuestran una recepción de alta calidad bajo condiciones específicas: THD ≤ 2 %, Pp ≥ 2,7 dBFS, RF a 13 kHz y SNR ≥ 39 dB. Se observó el mejor desempeño con
una desviación de frecuencia de 75 kHz, lo cual destaca la eficacia del HackRF One para transmisión WBFM. Este
trabajo fue financiado por la Escuela Colombiana de Ingeniería Julio Garavito bajo el código PRY18, 2018-1.
Referencias
Akeela, R., & Dezfouli, B. (2018). Software-defined Radios: Architecture, state-of-the-art, and challenges. Computer Communications, *128*, 106-125.
Alam, O. B., & Rogers, A. E. E. (2015). Enhancing Low-Cost Ozone Spectrometers to Measure Mesospheric Winds and Tides. arXiv. https://arxiv.org/pdf/1508.00894v3.pdf
Allahvirdi-Zadeh, A. (2021). Software Defined Radio (SDR) as a GNSS receiver in future CubeSats. 10.13140/RG.2.2.28290.20166
Collaborators GNU Radio. (2021, 19 March). GNU Radio: Main Page. https://wiki.gnuradio.org/index.php/Main_Page
Dharani, N. & Vaitheeswari, M. (2020). Design of SDR Transceiver in Industrial Automation. International Journal of Engineering Research & Technology (IJERT) NCETESFT – 2020 (Volume 8 – Issue 14)
Duarte, L., Gomes, R., Ribeiro, C., Caldeirinha, R.F.S. (2019). A Software-Defined Radio for Future Wireless Communication Systems at 60 GHz. Electronics, *8*, 1490. https://doi.org/10.3390/electronics8121490
Feng, S., Mughees, N., & Wollesen, V. (2020, September). Reviewing the application and integration of software-defined radios to radar systems. 2020 IEEE Radar Conference (RadarConf20) (pp. 1–6). IEEE. https://doi.org/10.1109/RadarConf2043947.2020.9266396
Gummineni, M., & Polipalli, T. R. (2020). Implementation of reconfigurable transceiver using GNU Radio and HackRF One. Wireless Personal Communications, *112*, 889–905. https://doi.org/10.1007/s11277-020-07080-0
Hapsari, J. P., & Ismail, M. (2021). Analisa unjuk kerja software defined radio (SDR) dengan teknik quadrature amplitude modulation (QAM). Infotekmesin, *12*(2), 139–143. https://doi.org/10.35970/infotekmesin.v12i2.726
Harianto, B. B., et al. (2021). Design indoor FM communication based on SDR and GNU Radio using validated spectrum analyzer. Journal of Physics: Conference Series, *1845*(1), 012078. https://doi.org/10.1088/1742-6596/1845/1/012078
Haykin, S., & Moher, M. (2009). Communication systems (5th ed.). John Wiley & Sons.
Hsieh, J.W., Tsai, G. R., & Lin, M. C. (2003, December). Using FPGA to implement an n-channel arbitrary waveform generator with various add-on functions. *2003 IEEE International Conference on Field-Programmable Technology (FPT)* (pp. 296–298). IEEE. https://doi.org/10.1109/FPT.2003.1275761
Jangir, B. K., Kumawat, V., Khatun, H., & Sinha, A. K. (2017, April). Computationally improved algorithm to find higher roots of integer order Bessel function in Gyrotron application. 2017 2nd International Conference for Convergence in Technology (I2CT) (pp. 910–914). IEEE. https://doi.org/10.1109/I2CT.2017.8226261
Jovanović, P., Petrović, P., Pavić, B., & Remenski, N. (2011). Implementation of RF signal generator for demodulator/receiver testing in SDR design. 2011 19th Telecommunications Forum (TELFOR) (pp. 282–284). IEEE. https://doi.org/10.1109/TELFOR.2011.6143545
Krishnan, R., Babu, R. G., Kaviya, S., Kumar, N. P., Rahul, C., & Raman, S. S. (2017, September). Software-defined radio (SDR) foundations, technology trade-offs: A survey. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 2677–2682). https://doi.org/10.1109/ICPCSI.2017.8392204
Leech, M. (2012). *A 21 cm radio telescope for the cost-conscious*. Canadian Centre for Experimental Radio Astronomy. https://www.ccera.ca/papers/a-21cm-radio-telescope-for-the-cost-conscious/
Mejías, C., De Castro, J., & Henriquez, K. (2015). Desarrollo de un generador vectorial de onda arbitraria basado en radio definida por software y software libre [Trabajo Especial de Grado, Universidad de Carabobo], Venezuela.
Meshram, S., & Kolhare, N. (2019, November). The advent of software-defined radio: FM receiver with RTL-SDR and GNU Radio. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 230–235). https://doi.org/10.1109/ICSSIT46314.2019.8987588
Mishra, M., Potnis, A., Dwivedy, P., & Meena, S. K. (2017, October). Software-defined radio-based receivers using RTL-SDR: A review. 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE) (pp. 62–65). https://doi.org/10.1109/RISE.2017.8378125
Narayana, P. S., Kumar, M. S., Kishan, A. K., & Suraj, K. V. R. K. (2018). Design approach for wideband FM receiver using RTL-SDR and Raspberry Pi. International Journal of Engineering & Technology, *7*(2.31), 9–12. https://doi.org/10.14419/ijet.v7i2.31.13386
Nasser, A., Al Haj Hassan, H., Abou Chaaya, J., Mansour, A., & Yao, K.-C. (2021). Spectrum sensing for cognitive radio: Recent advances and future challenges. Sensors, *21*(7), 2408. https://doi.org/10.3390/s21072408
Natarajan, T., & Devi Kh, C. (2017). A review on recent trends in software-defined radio design and applications. International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), *6*, 1021–1025.
Pei, Y., Chen, H., & Pei, B. (2018, July). Implementation of GPS software receiver based on GNU Radio. *2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC)* (pp. 1–3). https://doi.org/10.1109/CSQRWC.2018.8455475
Rischke, J., & Salah, H. (2020). Software-defined networks. In Computing in Communication Networks (pp. 107–118). Academic Press. https://doi.org/10.1016/B978-0-12-820488-7.00018-9
Shaik, P., Singya, P. K., & Bhatia, V. (2019). Performance analysis of QAM schemes for non-regenerative cooperative MIMO network with transmit antenna selection. AEU - International Journal of Electronics and Communications, *107*. https://doi.org/10.1016/j.aeue.2019.05.012
Singh, K., Biswas, S., Ratnarajah, T., & Khan, F. A. (2018). Transceiver design and power allocation for full-duplex MIMO communication systems with spectrum sharing radar. IEEE Transactions on Cognitive Communications and Networking, *4*(3), 556–566. https://doi.org/10.1109/TCCN.2018.2830758
Tang, W., Zheng, M., Yan Dai, Y., Zeng, Y., Zhao, X., Jin, Z., Chen, Q., & Jun Cui, T. (2020). Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design. IEEE Wireless Communications, *27*(2), 180–187. https://doi.org/10.1109/MWC.001.1900308
Wang, T., Yang, G., Chen, P., Xu, Z., Jiang, M., & Ye, Q. (2022). A survey of applications of deep learning in radio signal modulation recognition. Applied Sciences, *12*(23), 12052. https://doi.org/10.3390/app122312052
Zhou, K., Deng, L., & Zhang, J. (2020). Research on repeater technology based on software-defined radio. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE) (pp. 118–122). IEEE. https://doi.org/10.1109/CISCE50729.2020.00030
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Hernán Paz Penagos

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Esta licencia permite a otros remezclar, adaptar y desarrollar su trabajo incluso con fines comerciales, siempre que le den crédito y concedan licencias para sus nuevas creaciones bajo los mismos términos. Esta licencia a menudo se compara con las licencias de software libre y de código abierto “copyleft”. Todos los trabajos nuevos basados en el tuyo tendrán la misma licencia, por lo que cualquier derivado también permitirá el uso comercial. Esta es la licencia utilizada por Wikipedia y se recomienda para materiales que se beneficiarían al incorporar contenido de Wikipedia y proyectos con licencias similares.