20411

DOI:

https://doi.org/10.14483/22487638.20411

Publicado:

01-09-2024

Número:

Vol. 28 Núm. 81 (2024): Julio - Septiembre

Sección:

Investigación

Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation

Calidad de la señal de un transceptor SDR de banda ancha al variar la desviación de frecuencia

Autores/as

Palabras clave:

broadband frequency modulation, GNU radio, modulation rate, signal quality, software-defined radio (en).

Palabras clave:

modulación de frecuencia de banda ancha, radio GNU, tasa de modulación, calidad de la señal, radio definida por software (es).

Resumen (en)

This study examines the quality of an audio signal received via a Software-Defined Radio (SDR) peripheral
for Wideband Frequency Modulation (WBFM). The objective is to evaluate the impact of varying the maximum
frequency deviations of the modulator, through the WBFM transmit block, on audio quality. Tests were conducted
in an open space at a fixed distance of 50 meters using a chirp signal and an audio file in .WAV format as
messages. Signal quality was evaluated using the RMAA 6.1.4 Right Mark Audio Analyzer and SDR# spectrum
analyzer, with a 16-bit resolution and a 96 kHz sampling rate. Key performance parameters included: total harmonic
distortion (THD), peak power (Pp), frequency response (RF), and signal-to-noise ratio (SNR). Results indicate
high-quality reception under specific conditions: THD ≤ 2 %, Pp ≥ 2.7 dBFS, RF at 13 kHz, and SNR ≥ 39 dB. Optimal
performance was observed with a frequency deviation of 75 kHz, highlighting HackRF One’s suitability for
WBFM transmission. This work demonstrates SDR’s flexibility in modulating and demodulating signals, providing a low-cost and efficient alternative for audio transmission. The study was funded by the Escuela Colombiana de Ingeniería Julio Garavito under code PRY18, 2018-1.

Resumen (es)

Este estudio analiza la calidad de una señal de audio recibida en un periférico de radio definido por software
(SDR) para aplicaciones de modulación de frecuencia de banda ancha (WBFM). El objetivo es evaluar el impacto
que tiene la variación de las desviaciones máximas de frecuencia del modulador, a través del bloque de transmisión WBFM, en la calidad de la señal. Las pruebas se realizaron en un espacio abierto a una distancia fija de 50 metros, utilizando una señal chirp y un archivo de audio en formato .WAV como mensajes. Se emplearon los programas RMAA 6.1.4 Right Mark Audio Analyzer y SDR# spectrum analyzer con resolución de 16 bits y frecuencia de muestreo de 96 kHz para evaluar los parámetros: distorsión armónica total (THD), potencia pico (Pp), respuesta en frecuencia (RF) y relación señal/ruido (SNR). Los resultados demuestran una recepción de alta calidad bajo condiciones específicas: THD ≤ 2 %, Pp ≥ 2,7 dBFS, RF a 13 kHz y SNR ≥ 39 dB. Se observó el mejor desempeño con
una desviación de frecuencia de 75 kHz, lo cual destaca la eficacia del HackRF One para transmisión WBFM. Este
trabajo fue financiado por la Escuela Colombiana de Ingeniería Julio Garavito bajo el código PRY18, 2018-1.

Biografía del autor/a

Hernán Paz Penagos, Universidad Escuela Colombiana de Ingeniería Julio Garavito

Electronic Engineer, Electrical Engineer, Ph.D. in Education Department of Electronic Engineering. Escuela Colombiana de Ingeniería Julio Garavito . Bogotá D.C, Colombia

Referencias

Akeela, R., & Dezfouli, B. (2018). Software-defined Radios: Architecture, state-of-the-art, and challenges. Computer Communications, *128*, 106-125.

Alam, O. B., & Rogers, A. E. E. (2015). Enhancing Low-Cost Ozone Spectrometers to Measure Mesospheric Winds and Tides. arXiv. https://arxiv.org/pdf/1508.00894v3.pdf

Allahvirdi-Zadeh, A. (2021). Software Defined Radio (SDR) as a GNSS receiver in future CubeSats. 10.13140/RG.2.2.28290.20166

Collaborators GNU Radio. (2021, 19 March). GNU Radio: Main Page. https://wiki.gnuradio.org/index.php/Main_Page

Dharani, N. & Vaitheeswari, M. (2020). Design of SDR Transceiver in Industrial Automation. International Journal of Engineering Research & Technology (IJERT) NCETESFT – 2020 (Volume 8 – Issue 14)

Duarte, L., Gomes, R., Ribeiro, C., Caldeirinha, R.F.S. (2019). A Software-Defined Radio for Future Wireless Communication Systems at 60 GHz. Electronics, *8*, 1490. https://doi.org/10.3390/electronics8121490

Feng, S., Mughees, N., & Wollesen, V. (2020, September). Reviewing the application and integration of software-defined radios to radar systems. 2020 IEEE Radar Conference (RadarConf20) (pp. 1–6). IEEE. https://doi.org/10.1109/RadarConf2043947.2020.9266396

Gummineni, M., & Polipalli, T. R. (2020). Implementation of reconfigurable transceiver using GNU Radio and HackRF One. Wireless Personal Communications, *112*, 889–905. https://doi.org/10.1007/s11277-020-07080-0

Hapsari, J. P., & Ismail, M. (2021). Analisa unjuk kerja software defined radio (SDR) dengan teknik quadrature amplitude modulation (QAM). Infotekmesin, *12*(2), 139–143. https://doi.org/10.35970/infotekmesin.v12i2.726

Harianto, B. B., et al. (2021). Design indoor FM communication based on SDR and GNU Radio using validated spectrum analyzer. Journal of Physics: Conference Series, *1845*(1), 012078. https://doi.org/10.1088/1742-6596/1845/1/012078

Haykin, S., & Moher, M. (2009). Communication systems (5th ed.). John Wiley & Sons.

Hsieh, J.W., Tsai, G. R., & Lin, M. C. (2003, December). Using FPGA to implement an n-channel arbitrary waveform generator with various add-on functions. *2003 IEEE International Conference on Field-Programmable Technology (FPT)* (pp. 296–298). IEEE. https://doi.org/10.1109/FPT.2003.1275761

Jangir, B. K., Kumawat, V., Khatun, H., & Sinha, A. K. (2017, April). Computationally improved algorithm to find higher roots of integer order Bessel function in Gyrotron application. 2017 2nd International Conference for Convergence in Technology (I2CT) (pp. 910–914). IEEE. https://doi.org/10.1109/I2CT.2017.8226261

Jovanović, P., Petrović, P., Pavić, B., & Remenski, N. (2011). Implementation of RF signal generator for demodulator/receiver testing in SDR design. 2011 19th Telecommunications Forum (TELFOR) (pp. 282–284). IEEE. https://doi.org/10.1109/TELFOR.2011.6143545

Krishnan, R., Babu, R. G., Kaviya, S., Kumar, N. P., Rahul, C., & Raman, S. S. (2017, September). Software-defined radio (SDR) foundations, technology trade-offs: A survey. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 2677–2682). https://doi.org/10.1109/ICPCSI.2017.8392204

Leech, M. (2012). *A 21 cm radio telescope for the cost-conscious*. Canadian Centre for Experimental Radio Astronomy. https://www.ccera.ca/papers/a-21cm-radio-telescope-for-the-cost-conscious/

Mejías, C., De Castro, J., & Henriquez, K. (2015). Desarrollo de un generador vectorial de onda arbitraria basado en radio definida por software y software libre [Trabajo Especial de Grado, Universidad de Carabobo], Venezuela.

Meshram, S., & Kolhare, N. (2019, November). The advent of software-defined radio: FM receiver with RTL-SDR and GNU Radio. 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 230–235). https://doi.org/10.1109/ICSSIT46314.2019.8987588

Mishra, M., Potnis, A., Dwivedy, P., & Meena, S. K. (2017, October). Software-defined radio-based receivers using RTL-SDR: A review. 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE) (pp. 62–65). https://doi.org/10.1109/RISE.2017.8378125

Narayana, P. S., Kumar, M. S., Kishan, A. K., & Suraj, K. V. R. K. (2018). Design approach for wideband FM receiver using RTL-SDR and Raspberry Pi. International Journal of Engineering & Technology, *7*(2.31), 9–12. https://doi.org/10.14419/ijet.v7i2.31.13386

Nasser, A., Al Haj Hassan, H., Abou Chaaya, J., Mansour, A., & Yao, K.-C. (2021). Spectrum sensing for cognitive radio: Recent advances and future challenges. Sensors, *21*(7), 2408. https://doi.org/10.3390/s21072408

Natarajan, T., & Devi Kh, C. (2017). A review on recent trends in software-defined radio design and applications. International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), *6*, 1021–1025.

Pei, Y., Chen, H., & Pei, B. (2018, July). Implementation of GPS software receiver based on GNU Radio. *2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC)* (pp. 1–3). https://doi.org/10.1109/CSQRWC.2018.8455475

Rischke, J., & Salah, H. (2020). Software-defined networks. In Computing in Communication Networks (pp. 107–118). Academic Press. https://doi.org/10.1016/B978-0-12-820488-7.00018-9

Shaik, P., Singya, P. K., & Bhatia, V. (2019). Performance analysis of QAM schemes for non-regenerative cooperative MIMO network with transmit antenna selection. AEU - International Journal of Electronics and Communications, *107*. https://doi.org/10.1016/j.aeue.2019.05.012

Singh, K., Biswas, S., Ratnarajah, T., & Khan, F. A. (2018). Transceiver design and power allocation for full-duplex MIMO communication systems with spectrum sharing radar. IEEE Transactions on Cognitive Communications and Networking, *4*(3), 556–566. https://doi.org/10.1109/TCCN.2018.2830758

Tang, W., Zheng, M., Yan Dai, Y., Zeng, Y., Zhao, X., Jin, Z., Chen, Q., & Jun Cui, T. (2020). Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design. IEEE Wireless Communications, *27*(2), 180–187. https://doi.org/10.1109/MWC.001.1900308

Wang, T., Yang, G., Chen, P., Xu, Z., Jiang, M., & Ye, Q. (2022). A survey of applications of deep learning in radio signal modulation recognition. Applied Sciences, *12*(23), 12052. https://doi.org/10.3390/app122312052

Zhou, K., Deng, L., & Zhang, J. (2020). Research on repeater technology based on software-defined radio. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE) (pp. 118–122). IEEE. https://doi.org/10.1109/CISCE50729.2020.00030

Cómo citar

APA

Paz Penagos, H. (2024). Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation. Tecnura, 28(81). https://doi.org/10.14483/22487638.20411

ACM

[1]
Paz Penagos, H. 2024. Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation. Tecnura. 28, 81 (sep. 2024). DOI:https://doi.org/10.14483/22487638.20411.

ACS

(1)
Paz Penagos, H. Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation. Tecnura 2024, 28.

ABNT

PAZ PENAGOS, Hernán. Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation. Tecnura, [S. l.], v. 28, n. 81, 2024. DOI: 10.14483/22487638.20411. Disponível em: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/20411. Acesso em: 18 may. 2025.

Chicago

Paz Penagos, Hernán. 2024. «Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation». Tecnura 28 (81). https://doi.org/10.14483/22487638.20411.

Harvard

Paz Penagos, H. (2024) «Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation», Tecnura, 28(81). doi: 10.14483/22487638.20411.

IEEE

[1]
H. Paz Penagos, «Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation», Tecnura, vol. 28, n.º 81, sep. 2024.

MLA

Paz Penagos, Hernán. «Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation». Tecnura, vol. 28, n.º 81, septiembre de 2024, doi:10.14483/22487638.20411.

Turabian

Paz Penagos, Hernán. «Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation». Tecnura 28, no. 81 (septiembre 1, 2024). Accedido mayo 18, 2025. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/20411.

Vancouver

1.
Paz Penagos H. Signal Quality of a Wideband SDR Transceiver Under Varying Frequency Deviation. Tecnura [Internet]. 1 de septiembre de 2024 [citado 18 de mayo de 2025];28(81). Disponible en: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/20411

Descargar cita

Visitas

0

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.
Loading...