Mechanical resistance of a chemically-modified warm mix asphalt

Resistencia mecánica de un asfalto de mezcla caliente químicamente modificado

  • Hugo Alexander Rondón Quintana Distrital Francisco José de Caldas
  • Wilmar Darío Fernández Gómez Universidad Distrital Francisco José de Caldas
Palabras clave: chemical additive, foamed asphalt, hot mix asphalt, mechanical behavior, warmmixasphalt. (en_US)
Palabras clave: chemical additive, foamed asphalt, hot mix asphalt, mechanical behavior, warmmixasphalt. (es_ES)

Resumen (en_US)

Warm Mix Asphalt (WMA) technology offersa wide range of potential for use in road construction projects. Although the principal advantage of using WMA mixtures is environmental, there are also noteworthytechnical and economic benefits. Thispaperdiscusses results for the laboratory evaluation ofWMAmixtures and their subsequent comparison totraditional hot mix asphalts (HMA). WMA and HMA mixtures of nominal maximum aggregate size 25 mmwere employed in this study.The WMAs were obtained by means of aliquid chemical solutionthat foamsthe asphalt binderAC 60-70 (PG 58-22).Aspects studied include strength under monotonic and dynamic loading. Additionally, a battery of tests wasperformed: Marshall, resilient modulus, permanent deformation and indirect tensile strength.The researchherein leads to the conclusion that theWMA chemical additive decreases mix temperatures by 30° C, which, in turn, translates intobettermixture workability and volumetric composition. Furthermore, WMAs display higher levels of resistance to high service temperaturesunder monotonic and dynamic loading.

 

Resumen (es_ES)


La tecnología Warm Mix Asphalt (WMA) ofrece un amplio rango de potencial para usar en proyectos de construcción de carreteras. Aunque la principal ventaja de usar mezclas WMA es ambiental, también hay beneficios técnicos y económicos notables. Este artículo discute los resultados para la evaluación de laboratorio de mezclas de AM y su comparación posterior de asfaltos de mezcla en caliente (HMA). En este estudio, se emplearon mezclas de WMA y HMA de un tamaño nominal máximo de agregado de 25 mm. Las WMA se obtuvieron mediante una solución química alíquica que espumeja el aglutinante de asfaltoAC 60-70 (PG 58-22). Los aspectos estudiados incluyen la fuerza bajo carga monotónica y dinámica. Además, se realizó una batería de pruebas: Marshall, módulo elástico, deformación permanente y resistencia a la tracción indirecta. La investigación lleva a la conclusión de que el aditivo químico WMA disminuye las temperaturas de mezcla en 30 ° C, lo que a su vez se traduce en una menor trabajabilidad y composición volumétrica. Además, las WMA muestran mayores niveles de resistencia a altas temperaturas de servicio con carga monótona y dinámica.

 

 

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Hugo Alexander Rondón Quintana, Distrital Francisco José de Caldas

Civil Engineer, Masters in Civil Engineering and Doctorate in Engineering, Faculty of the Environment and Natural Resources, Universidad Distrital Francisco José de Caldas. Bogotá.  

Wilmar Darío Fernández Gómez, Universidad Distrital Francisco José de Caldas

Civil Engineer, Masters in Civil Engineering and Doctorate in Engineering, Faculty of the Environment and Natural Resources, Universidad Distrital Francisco José de Caldas. Bogotá. 

Referencias

Ameri, M., Hesami, S., & Goli, H. (2013). Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Construction Materials and Pavement Design(49), 611-617.

Behl, A., Kumar, G., Sharma, G., & Jain, P. K. (2013). Evaluation of field performance of warm-mix asphalt pavements in India. Procedia - Social and Behavioral Sciences(104), 158-167.

Behnia, B., Dave, E., Ahmed, S., Buttlar, W., & Reis, H. (2011). Effects of recycled asphalt pavement amounts on low-temperature cracking performance of asphalt mixtures using acoustic emissions. Transportation Research Record(2208), 64-71.

Biro, S., Gandhi, T., & Amirkhanian, S. (2009). Midrange temperature rheological properties of warm asphalt binders. Journal of Materials in Civil Engineering, 21(7), 316-323.

Blankendaal, T., Schuur, P., & Voordijk, H. (2014). Reducing the environmental impact of concrete and asphalt: a scenario approach. Journal of Cleaner Production(66), 27-36.

Bonaquist, R. (2011). Mix design practices for warm mix asphalt. National Cooperative Highway Research Program - NCHRP. Washington DC: TRB.

Capitão, S., Picado-Santos, L., & Martinho, F. (2012). Pavement engineering materials: review on the use of warm-mix asphalt. Construction and Building Materials(36), 1016-1024.

Doyle, J., & Howard, I. (2013). Rutting and moisture damage resistance of high reclaimed asphalt pavement warm mixed asphalt: loaded wheel tracking vs. conventional methods. Road Materials and Pavement Design, 14(S2), 148-172.

Estakhri, C. K., Cao, R., Alvarez, A., & Button, J. (2009). Production, placement and performance evaluation of warm mix asphalt in Texas. GeoHunan International Conference 2009 (págs. 1-8). Washington, DC: ASCE.

Goh, S. W., Hasan, M. R., & You, Z. (2013). Performances evaluation of Cecabase® RT in warm mix asphalt technology. Procedia - Social and Behavioral Sciences(96), 2782-2790.

Hajj, E. Y., Souliman, M. I., & Cortez, E. M. (2014). Influence of warm mix additive on mechanistic, economical, and environmental attributes of a polymer-modified asphalt mixture. Advances in Civil Engineering, 3(1), 88-106.

Hassan, M. (2010). Evaluation of the environmental and economic impacts of warm-mix asphalt using life-cycle assessment. International Journal of Construction Education and Research, 6(3), 238-250.

Hill, B., Behnia, B., Buttlar, W., & Reis, H. (2013). Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement through mechanical performance tests and an acoustic emission approach. Journal of Materials in Civil Engineering, 25(12), 1887-1897.

Hossain, Z., & Zaman, M. (2013). Behavior of selected warm mix asphalt additive modified binders and prediction of dynamic modulus of the mixes. Journal of Testing and Evaluation, 41(1), 1-12.

Howard, I., Doyle, J., & Cox, B. (2013). Merits of reclaimed asphalt pavement-dominated warm mixed flexible pavement base layers. Road Materials and Pavement Design, 14(S2), 106-128.

Howard, I., Doyle, J., Hemsley, J., Baumgardner, J., & Cooley, L. (2014). Emergency paving using hot-mixed asphalt incorporating warm mix technology. International Journal of Pavement Engineering, 15(3), 202-214.

INVIAS, I. N. (2013). Especificaciones Generales de Construcción de Carreteras. Bogotá D.C.: INVIAS.

Kim, Y., Zhang, J., & Ban, H. (2012). Moisture damage characterization of warm-mix asphalt mixtures based on laboratory-field evaluation. Construction and Building Materials(31), 204-211.

Kristjansdottir, O., Muench, S., Michael, L., & Burke, G. (2007). Assessing potential for warm-mix asphalt technology adoption. Transportation Research Record(2040), 91-99.

McDaniel, R., Shah, A., Huber, G., & Gallivan, V. (2007). Investigation of properties of plant-produced RAP mixtures. Transportation Research Record(1998), 103-111.

Mogawer, W., Austerman, A., & Bahia, H. (2011). Evaluating the effect of warm-mix asphalt technologies on moisture characteristics of asphalt binders and mixtures. Transportation Research Record(2209), 52-60.

Mogawer, W., Austerman, A., Mohammad, L., & Kutay, M. (2013). Evaluation of high RAP-WMA asphalt rubber mixtures. Road Material and Pavement Design, 14(S2), 129-147.

Mokhtari, A., & Nejad, F. M. (2013). Comparative study on performance of wax-modified and typical SMA mixtures. Journal of Materials in Civil Engineering, 25(3), 419-427.

Morea, F., Marcozzi, R., & Castaño, G. (2012). Rheological properties of asphalt binders with chemical tensoactive additives used in warm mix asphalts (WMAs). Construction and Building Materials(29), 135-141.

Nejad, F., Azarhoosh, A., Hamedi, G., & Roshani, H. (2014). Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements. Road Materials and Pavement Design, 15(1), 207-219.

Prowell, B., Frank, B., Osborne, L., Kriech, T., & West, R. (2014). Effects of WMA on plant energy and emissions and worker exposures to respirable fumes. National Cooperative Highway Research Program - NCHRP. Washington, DC: TRB.

Robjent, L., & Dosh, W. (2009). Warm-mix asphalt for rural county roads. Cold Regions Engineering 2009 (págs. 438-454). Washington, DC: ASCE.

Romier, A., Audeon, M., David, J., & Martineau, Y. (2006). Low-energy asphalt with performance of hot-mix asphalt. Transportation Research Record(1962), 101-112.

Rondón, H., & Reyes, F. (2015). Pavimentos - Materiales, Construcción y Diseño. Bogotá D.C., Colombia: ECOE Ediciones.

Rossi, D., Filippi, S., Merusi, F., Giuliani, F., & Polacco, G. (2013). Internal structure of bitumen/polymer/wax ternary mixtures for warm mix asphalts. Journal of Applied Polymer Science(129), 341-354.

Rubio, M. C., Martínez, G., Baena, L., & Moreno, F. (2012). Warm mix asphalt: an overview. Journal of Cleaner Production(24), 76-84.

Sterling, V. (2012). Special mixture design considerations and methods for warm mix asphalt: a supplement to NCHRP Report 673: a manual for design of hot mix asphalt with commentary. National Cooperative Highway Research Program - NCHRP. Washington, DC: TRB.

Tan, Y., Guo, M., Xu, H., & Zhang, R. (2012). Comparative study on laboratory performance of hot- and warm-mix asphalt mixtures. Journal of Testing and Evaluation, 40(5), 1-9.

Tao, M., & Mallick, R. (2009a). Effects of warm-mix asphalt additives on workability and mechanical properties of reclaimed asphalt pavement material. Transportation Research Record(2126), 151-160.

Tao, Z., Huang, W., Du, Q., & Yan, J. (2009). Warm mix asphalt technology applied at low air temperature in China. Road Materials and Pavement Design, 10(S1), 337-347.

Topal, A., Sengoz, B., Kok, B., Yilmaz, M., Dokandari, P. A., Oner, J., y otros. (2014). Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives. Construction and Building Materials(57), 38-44.

United Nations Economic Commissions for Europe - UNECE. (2013). Globally Harmonized System of Classification and Labelling of Chemicals – GHS (Fifth ed.). Europe: ONU.

Vasconcelos, K., Bhasin, A., & Little, D. (2010). Influence of reduced production temperatures on the adhesive properties of aggregates and laboratory performance of fine aggregate-asphalt mixtures. Road Materials and Pavement Design, 11(1), 47-64.

Vidal, R., Moliner, E., Martínez, G., & Rubio, M. (2013). Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resources, Conservation and Recycling(74), 101-114.

Wang, C., Hao, P., Ruan, F., Zhang, X., & Adhikari, S. (2013). Determination of the production temperature of warm mix asphalt by workability test. Construction and Building Materials(48), 1165-1170.

Wasiuddin, N., Selvamohan, S., Zaman, M., & Guegan, M. (2007). Comparative laboratory study of Sasobit and Aspha-Min additives in warm-mix asphalt. Transportation Research Record(1998), 82-88.

West, R., Rodezno, C., Julian, G., & Prowell, D. (2014). Engineering properties and field performance of warm mix asphalt technologies. National Cooperative Highway Research Program - NCHRP. Washington, DC: TRB.

Wu, C., & Zeng, M. (2012). Effects of additives for warm mix asphalt on performance grades of asphalt binders. Journal of Testing and Evaluation(40), 265-272.

You, Z., & Goh, S. (2008). Laboratory evaluation of warm mix asphalt: a preliminary study. International Journal Pavement Reserarch and Technology, 1(1), 34-40.

Yu, X., Leng, Z., & Wei, T. (2014). Investigation of the rheological modification mechanism of warm-mix additives on crumb-rubber-modified asphalt. Journal of Materials in Civil Engineering, 26(2), 312-319.

Zhao, W., Xiao, F., Amirkhanian, S. N., & Putman, B. J. (2012). Characterization of rutting performance of warm additive modified asphalt mixtures. Construction and Building Materials(31), 265-272.

Cómo citar
Rondón Quintana, H. A., & Fernández Gómez, W. D. (2014). Resistencia mecánica de un asfalto de mezcla caliente químicamente modificado. Tecnura, 18, 97-108. https://doi.org/10.14483/22487638.9247
Publicado: 2014-12-01
Sección
Estudio de caso