Determinación de patrones de evolución de la congestión vial usando técnicas de minería de datos espacial

Resumen (es_ES)

La congestión vial en carreteras urbanas tiene dos categorías: Congestión recurrente (RC) y congestión no recurrente (NRC), El NRC es irregular, lo que significa que puede aparecer en cualquier momento y en cualquier lugar, y generalmente es causado por accidentes de tráfico, daños en la vía, control de tráfico temporal y otros eventos accidentales, por otro lado, La RC se produce con mayor frecuencia que la NRC, generalmente en un sitio, camino o área fijos durante las horas pico de la mañana o la tarde, y generalmente es causada por una alta demanda de tráfico, capacidad de tráfico insuficiente, señalización deficiente, infraestructura de tráfico inferior u otras condiciones relacionadas. Para la identificación de RC se utilizan procesos de minería de datos junto al algoritmo de culstering DBSCAN, con esto se buscó identificar un patrón evolutivo, de tal forma que permitiera evaluar la movilidad y aquellos puntos de congestión sobre una vía especifica de la ciudad de Bogotá.

Resumen (en_US)

Road congestion on urban roads has two categories: Recurrent congestion (CR) and non-recurrent congestion (NRC), The NRC is irregular, which means it can appear at any time and anywhere, and is usually caused by traffic accidents , damage to the road, temporary traffic control and other accidental events, on the other hand, CR occurs more frequently than the NRC, generally in a fixed place, road or area during the morning or afternoon peak hours, and it is usually caused by high traffic demand, insufficient traffic capacity, poor signaling, lower traffic infrastructure or other related conditions. For the identification of RC, data mining processes are used together with the DBSCAN culstering algorithm, with this purpose it was sought to identify an evolutionary pattern, in such a way that it would allow to evaluate the mobility and those points of congestion on a specific road of the city of Bogotá. 

Descargas

La descarga de datos todavía no está disponible.

Referencias

Alcaldía Mayor de Bogotá. (2018). MOVILIDAD Y DESARROLLO SOSTENIBLE v8, 14–64. Retrieved from http://www.movilidadbogota.gov.co/hiwebx_archivos/ideofolio/02-MovilidadyDesarrolloSostenible_14_53_49.pdf
An, S., Yang, H., Wang, J., Cui, N., & Cui, J. (2016). Mining urban recurrent congestion evolution patterns from GPS-equipped vehicle mobility data. Information Sciences, 373, 515–526. https://doi.org/10.1016/j.ins.2016.06.033
Anbaroglu, B., Heydecker, B., & Cheng, T. (2014). Spatio-temporal clustering for non-recurrent traffic congestion detection on urban road networks. Transportation Research Part C: Emerging Technologies, 48, 47–65. https://doi.org/10.1016/j.trc.2014.08.002
Bie, Y., Gong, X., & Liu, Z. (2015). Time of day intervals partition for bus schedule using GPS data. Transportation Research Part C: Emerging Technologies, 60, 443–456. https://doi.org/10.1016/j.trc.2015.09.016
Ester, M., Kriegel, H.-P., Jorg, S., & Xu, X. (1996). A Density-Based Clustering Algorithms for Discovering Clusters. Kdd, 96(34), 226–231. https://doi.org/10.1016/B978-044452701-1.00067-3
Fiori, A., Mignone, A., & Rospo, G. (2016). DeCoClu: Density consensus clustering approach for public transport data. Information Sciences, 328, 378–388. https://doi.org/10.1016/j.ins.2015.08.054
Gordon, R. (2015). Intelligent transportation systems: Functional design for effective traffic management: Second edition. Intelligent Transportation Systems: Functional Design for Effective Traffic Management: Second Edition. https://doi.org/10.1007/978-3-319-14768-0
Han, J., Kamber, M., & Pei, J. (2012). 10 - Cluster Analysis: Basic Concepts and Methods. In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining (Third Edition) (Third Edit, pp. 443–495). Boston: Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00010-1
Hwang, R. H., Hsueh, Y. L., & Chen, Y. T. (2015). An effective taxi recommender system based on a spatio-temporal factor analysis model. Information Sciences, 314, 28–40. https://doi.org/10.1016/j.ins.2015.03.068
Ji, Y., Luo, J., & Geroliminis, N. (2014). Empirical Observations of Congestion Propagation and Dynamic Partitioning with Probe Data for Large-Scale Systems. Transportation Research Record: Journal of the Transportation Research Board, 2422(1), 1–11. https://doi.org/10.3141/2422-01
Luo, Y., Hadiuzzaman, M., Fang, J., & Qiu, T. Z. (2015). Assessing the mobility benefits of proactive optimal variable speed limit control during recurrent and non-recurrent congestion. Canadian Journal of Civil Engineering, 42(7), 477–489. https://doi.org/10.1139/cjce-2013-0427
Ma, X., Yu, H., Wang, Y., & Wang, Y. (2015). Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS ONE, 10(3), 1–17. https://doi.org/10.1371/journal.pone.0119044
Ozbay, Y., & Ma, X. (2015). Development of an Automated Approach for Quantifying Spatiotemporal Impact of Traffic Incidents.
Palau, J. J. (n.d.). Análisis del transporte masivo y la movilidad en Bogotá Analysis of Mass Transport and Mobility in Bogotá Análise do transporte massivo e a mobilidade em Bogotá.
Pereira Timarán, S. R., Arteaga Hernández, I., Caicedo Zambrano, S. J., Hidalgo Troya, A., & Alvarado Pérez, J. C. (2016). El proceso de descubrimiento de conocimiento en bases de datos. Descubrimiento de patrones de desempeño académico con árboles de decisión en las competencias genéricas de la formación profesional. https://doi.org/dx.doi.org/10.16925/9789587600490
Pyle, D. (1999). Data Preparation for Data Mining. Morgan Kaufmann Publishers. https://doi.org/10.1080/08839510390219264
Tulic, M., Bauer, D., & Scherrer, W. (2015). Link and Route Travel Time Prediction Including the Corresponding Reliability in an Urban Network Based on Taxi Floating Car Data. Transportation Research Record: Journal of the Transportation Research Board, 2442(1), 140–149. https://doi.org/10.3141/2442-15
Yin, S., Li, X., Gao, H., & Kaynak, O. (2015). Data-based techniques focused on modern industry: An overview. IEEE Transactions on Industrial Electronics, 62(1), 657–667. https://doi.org/10.1109/TIE.2014.2308133
Yin, S., Wang, G., & Gao, H. (2016). Data-Driven Process Monitoring Based on Modified OrthogYin, S., Wang, G., & Gao, H. (2016). Data-Driven Process Monitoring Based on Modified Orthogonal Projections to Latent Structures. IEEE Transactions on Control Systems Technology, 24(4), 1480–1487. ht. IEEE Transactions on Control Systems Technology, 24(4), 1480–1487. https://doi.org/10.1109/TCST.2015.2481318
Cómo citar
Robles Mondragón, A. (2020). Determinación de patrones de evolución de la congestión vial usando técnicas de minería de datos espacial. UD Y La geomática, (15). https://doi.org/10.14483/23448407.15250
Sección
Artículo de investigación científica y tecnológica