Publicado:

2021-05-20

Número:

Núm. 16 (2021)

Sección:

Artículo de revisión

Imágenes hiperespectrales y sus aplicaciones en estudios de suelos, cultivos y   bosques, en la era de la cuarta revolución industrial.

Autores/as

  • Jonás León Pérez

Palabras clave:

salinidad de suelos, cartografía de suelos, cartografía de cultivos, enfermedades forestales, UAV, internet de las cosas, big data, minería de datos, computación en la nube, tecnologías disruptivas. (es).

Palabras clave:

Soil salinity, soil mapping, crop mapping, forest diseases, UAV, internet of things, big data, data mining, cloud computing, disruptive technologies. (en).

Descargas

Resumen (es)

Para implementar una agricultura  sostenible y un manejo racional del medio ambiente, es necesario tener un mejor conocimiento de los suelos, de los cultivos, de los bosques, del agua y de otros recursos relacionados.  Esto implica, entre otros, utilizar tecnologías de última generación, como las imágenes hiperespectrales (HSI), que presentan soluciones prácticas para entender, modelar y mapear las principales características de los recursos terrestres, además, para monitorear sus dinámicas en el tiempo y en el espacio.  Las HSI capturan la energía reflejada o emitida desde la superficie terrestre, en cientos de bandas estrechas y contiguas, comprendida entre las regiones visible e infrarrojo de onda corta (0.4-2.5 µm), del espectro electromagnético, situación que les permite caracterizar y diferenciar de manera más eficiente los objetos y fenómenos que se encuentran en ella.  El objetivo principal de este artículo es hacer una revisión del uso que se ha hecho de las HSI en el pasado (antes del año 2011) y las tendencias en el presente y hacia el futuro (después del año 2011), para el estudio de suelos, cultivos y bosques, considerando, para el segundo período, los avances en el uso de vehículos aéreos no tripulados y los efectos de la integración de los datos hiperespectrales con las tecnologías disruptivas, productos de la cuarta revolución industrial proclamada en el año 2011, en especial con los big data, internet de las cosas, minería de datos, computación en la nube e inteligencia artificial, buscando aportar al conocimiento de los beneficios de esa integración.

Resumen (en)

 

To implement sustainable agriculture and rational management of the environment, it is necessary to have a better knowledge of soils, crops, forests, water and other related resources. This implies, among others, using state-of-the-art technologies, such as hyperspectral imaging (HSI), which present practical solutions to understand, model and map the main characteristics of terrestrial resources, as well as to monitor their dynamics over time and space. HSIs capture the energy reflected or emitted from the earth's surface, in hundreds of narrow and contiguous bands, between the visible and short-wave infrared regions (0.4-2.5 µm), of the electromagnetic spectrum, a situation that allows them to characterize and differentiate between more efficiently the objects and phenomena that are in it. The main objective of this article is to review the use made of HSI in the past (before 2011) and trends in the present and in the future (after 2011), for the study of soils , crops and forests, considering, for the second period, the advances in the use of unmanned aerial vehicles and the effects of the integration of hyperspectral data with disruptive technologies, products of the fourth industrial revolution proclaimed in 2011, in especially with big data, internet of things, data mining, cloud computing and artificial intelligence, seeking to contribute to the knowledge of the benefits of this Integration.

Referencias

Referencias bibliográficas

Adrien, P.M., Baumgardner, M.F., Brown, C.E. y Peterson, J.B. (1982). Characteristic Variations in Reflectance of Saline and Alkaline Soils of the Bolivian Altiplano. USA: Laboratory for Applications of Remote Sensing. Purdue University.

Al-Amin, M. & Phinn, S. (2019). Methods for linking drone and field hyperspectral data to satellite data. En P.S. Thenkabail, J.G. Lyon & A. Huete (Eds.). Fundamentals, sensor systems, spectral libraries and data mining for vegetation (pp. 149-164). Boca Raton, USA: CRC Press.

Aneece, I.P. & Thenkabail, P.S. (2018). Accuracies achieved in classifying five leading world crop types and their growth stages using optimal Earth-Observing-1 Hyperion hyperspectral narrow bands on Google Earth Engine. Remote Sen., 10(2027). doi: 10.3390/rs10122027 .

Aneece, I.P., Thenkabail, P.S., Lyon, J.G., Huete, A. & Slonecker, T. (2019). Spaceborne hyperspectral EO-1 Hyperion data pre-processing methods, approaches and algorithms. En P.S. Thenkabail, L.G. Lyon & A. Huete (Eds.). Fundamentals, sensor systems, spectral libraries and data mining for vegetation (251-272). Boca Raton, USA: CRC Press.

Apan, A., Held, A., Phinn, S. y Markley, J. (2004). Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion Hyperspectral imagery. International Journal of Remote Sensing, 16(2), 489-498.

Asner P., G. (2008). Hyperspectral remote sensing of canopy chemistry, physiology, and biodiversity in tropical rainforests. En Kalacska, M. y Sanchez-Asofeifa, G.A. (Eds.). Hyperspectral remote sensing of tropical and subtropical forests. (pp. 261-296). USA: CRC Press.

Bajwa, S.G. and Kulkani, S.S. Hyperspectral data mining. (2012).En: Thenkabail, P.S., Lyon, G.J. and Hute, A. (Eds.). Hyperspectral remote sensing of vegetation. (pp. 93-120). USA: CRC Press.

Baumgardner, M.F. (1985). Reflectance properties of soil. Advances in Agronomy, 16, 1-43.

Ben-Dor, E., Chabrillat, S., Dematte, J.A.M., Taylor, G.R., Hill, J., Whiting, M.L. & Sommer, S. (2009). Using Spectroscopy to study soil properties. Remote Sensing of Environment. 113, 38-55.

Ben-Dor, E., Chabrillat, S. & Dematte, J.A.M. (2019). Characterization of soil properties using reflectance spectroscopy. En P.S. Thenkabail, J.G. Lyon & A. Huete (Eds.). Fundamentals, sensor systems, spectral libraries, and data mining of vegetation (chapter 8). Boca Raton, USA: CRC press.

Ben-Dor, E. (July 2017). Spectral imaging of soils: past present and future. 2nd International Conference on Airborne research for the Environment. DLR-the German Aerospace Research Center, Germany.

Bhargavi, P. & Jyothi, S. (2018). Big data and internet of things for analyzing and designing systems based on hyperspectral images. En K. Prasad (Ed.). Exploring the convergence of big data and the internet of things (pp. 240-260). USA: IGI Global.

Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N.M. & Chanussot, J. (2013). Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2), 6-36. doi: 10.1109/MGRS.2013.2244672.
Borengasser, M., Hungate, W.S. & Watkins, R. (2008). Hyperspectral remote sensing: principles and applications. London: CRC Press. 119p.

Canadian Space Agency-CSA. (nd). Hyperspectral Remote Sensing: Applications for Agriculture.

Carmon, N. & Ben-Dor, E. (2017). An advanced analytical approach for spectral-based modelling of soil properties. International Journal of Emerging Technology and Advanced Engineering, 7(3), 90-97.

Chabrillat, S., Ben-Dor, E., Cierniewski, J., Gómez, C., Schmid, T. & van Wesemael, B. (2019). Imagen spectroscopy for soil mapping and monitoring. Survey in Geophysics, 40, 361-399. https://doi.org/10.1007/s10712-019-09524-0 .

Csillag, F., Pásztor, L. & Biehl, L. (1993). Spectral band selection for the characterization of salinity status of soils. Remote Sensing of Environment, 43, 231-242. https://doi.org/10.1016/0034-4257 (93)90068-9.

Dehaan, R. & Taylor, G.R. (2003). Image derived spectral endmembers as indicator of salinity. International Journal of Remote Sensing, 24, 775-794.

Darvishzadeh, R. (2008). Hyperspectral remote sensing of vegetation parameters using statistical and physical models. Chapter Seven: Synthesis. Recuperado de http://www.itc.nl/library/papers/_2008/phd/rashanak.pdf.

Dematte, J.A.M., Dematte, J.L., Camargo, W., Fiorio, P. & Nanni, M. (2001). Remote sensing in the recognition and mapping of tropical soils developed on topographic sequences. Mapping Sciences and Remote Sensing. 38, 79-102.

Dutkiewicz, A., Lewis, M. & Ostedorf, B. (2006). Mapping surface symptoms of dry land salinity with hyperspectral imagery. En: Symposium Remote Sensing: From Pixels to Processes; Enschede, The Netherlands). Netherlands: ISPRS Commission VII, 2006. p. 87-92.

Galvao, L.S., Neves-Epifanio, J.C., Breuning, F.M. & Formagio, A.R. (2012). Crop type discrimination using hyperspectral data. En P.S. Thenkabail, J.G. Lyon & A. Huete (Eds.). Hyperspectral remote sensing of vegetation (chapter 17). Boca Raton, USA: CRC Press.

Gholizadeh, A. & Kopackova, V. (2018). Detecting vegetation stress as a soil contamination proxy: a review of optical proximal and remote sensing techniques. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-019-02310-w .

Glenn, N.F., Mundt, J.T., Weber, K.T., Prather, T.S., Lass, L. & Pettengill, J. (2005).Hyperspectral data processing for repeat detection of small infestation of Leafy Spurge. Remote Sensing of Environment, 95, 399-412.

González, A. (1985). Características espectrales de algunos suelos volcánicos del Ecuador. Quito: CLIRSEN.

Govender, M., Chetty, K. & Bulcok, H. A review of hyperspectral remote sensing and its application. Recuperado de http://www.wrc.org.za.

Gutiérrez, S., Fernández-Novales, J., Diago, M.P. & Tardaguila, J. (2018). On-the-go hyperspectral imaging under field conditions and machine learning for the classification of grapevine varieties. Front. Plant Sci., 9(1102). doi: 10.3389/fpls.2018.01102

Gutiérrez, S., Tardaguila, J., Fernández-Novales, J. & Diago, M.P. (2016). Data mining and NIR spectroscopy in viticulture: applications for plant phenotiping under field conditions. Sensors, 16(236). doi : 10.3390/s16020236.

He, L., Li, J., Liu, Ch. & Li, Sh. (2018). Recent advances on spectral-spatial hiperspectral image classification: an overview and new guidelines. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 1579-1597. doi: 10.1109/TGRS.2017.2765364.

Howari, F.M., Goodell, P.C. & Miyamoto, S. (2002).Spectral properties of salt crust formed on saline soils. J. Environment Qualities, 31, 1453-1461.

Ismail, R., Mutanga, O. & Ahmed, F. (2008). Discriminating sirex nectilo attack in pine forest plantations in South Africa using high spectral resolution data. En M. Kalacska & G.A. Sanchez-Azofeifa (Eds.). Hyperspectral remote sensing of tropical and subtropical forests. (pp.161-176). USA: CRC Press.

Jensen, J.R. (2005). Introductory digital imaging processing: a remote sensing perspective. New York: Pearson Prentice Hall. 526p.

Johnson, B.D. (2002). Spectral imaging finds a place on the farm. En: Photonics Spectra, (1-3).

Jones, Ch. & Chow, D. (2001). Applications of hyperspectral imagery to precision agriculture. Canada: University of Waterloo.

Jorgensen, R.N. (2002). Study on line Imaging Spectroscopy as a tool for Nitrogen Diagnostics in Precision Farming. (Thesis Doctor of Philosophy). The Royal Veterinary and Agricultural University. Copenhagen, Denmark.


Kemerer, A., Mari, N., Di Bella, C. & Rebella, C. (2007). Comparación de técnicas de clasificación de cultivos a partir de información multi e hiperespectral. Teledetección – Hacia un mejor entendimiento de la dinámica regional y global. Argentina: Martín, 73-77.
Koch, M., Schmid, T., Gumuzzio, J. & Mather, P.M. (2003). Evaluation of ASTER and DAIS data for mapping semiarid wetlands in La Mancha, Spain. Ponencia presentada en el 3er EARSeL Workshop on Imaging Spectroscopy, Herrsching, May 13-16.

Kokaly, R.F., Clark, R.N. & Livo, K.E. (1998). Mapping the biology and mineralogy of Yellowstone National Park using imaging spectroscopy. En: R.O. Green(Ed.). Sumaries of the 7th annual JPL airborne earth sciences workshop (pp. 245-254). JPL publications.

León, J.C. (2013). Imágenes hiperespectrales (HSI): La nueva generación de los sensores remotos. Análisis Geográficos, 51, 49-68.

León, J.C. (2010). El radar y sus aplicaciones en la agricultura. Análisis Geográficos, 44, 159-174.

León, J.C. (2002). Satélites para cultivar. UNPeriódico, 37, 14.

León-Pérez, J. (2019). Impacto de las tecnologías disruptivas en la percepción remota: big data, internet de las cosas e inteligencia artificial. UD y la Geomática, 14, 54-61. Doi: https//doi.org/10.14483/23448407.15658

Liaghat, S. & Balasundram, S.K. (2010). A review: the role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences. 5(1), 50-55.

López-Granados, F., Jurado-Expósito, M., Peña, J.M. & García, L. (2006). Using remote sensing for identification of late-season grass weed patches in wheat. Weed Sci., 54, 346-353.

Madeira, J.S., Robbez-Masson, J.M. & Martins, E. (2009). Visible-NIR hyperspectral imagery for discriminating soil types in the La Peyne Watershed (France). En Lagacherie, P., McBratney, A.B. & Voltz, M. (Eds.). Digital Soil Mapping (219-234). The Netherlands: Elsevier.
Martin, M.E., Newman, S.D., Aber, J.D. & Congalton, R.G. (1998). Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment, 65,249.

Meternicht, G.I. & Zinck, J.A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85, 1-20.

Middleton, E.M., Huemmrich, K.F., Chen, Y-B & Margolis, H.A. (2012). Spectral bioindicators of photosynthetic efficiency and vegetation stress. En Thenkabail, P.S., Lyon, G.J. & Huete, A. (Eds.). Hyperspectral remote sensing of vegetation (pp. 265-288). USA: CRC Press.

Moreno, R., Corona, F., Lendasse, A., Graña, M. & Galvao, L.S. (2014). Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing, 128, 207-216.

Neto, O.C.R., Teixeira, A.S., Leao, L.A.O., Moreira, L.C.J. & Galvao, L.S. (2017). Hyperspectral remote sensing for detecting soil salinization using ProSpectTIR-VS aerial imagery and sensor simulation. Remote Sen., 9(42), 1-16. doi: 10.3390/rs9010042.

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthes, M. et al. (2015). Soil spectroscopy: an alternative to wet chemestry for soil monitoring. Advances in Agronomy, 132, 1-22. http://dx.doi.org/10.1016/bs.agron.2015.02.002.

NRC-National Research Council. (1997). Precision agriculture in the 21st century. Washington: National Academy. 149p.

Ortenberg, F. (2012). Hyperspectral sensor characteristics: airborne, spaceborne, hand-held, and truck-mounted; integration of hyperspectral data with LIDAR. En Thenkabail, P.S., Lyon, G.J. & Huete,A. (Eds.). Hyperspectral remote sensing of vegetation. (pp. 39-68). USA: CRC Press.
Parker, W. A. & Hunt, E.R. (2002).Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sensing of Environment, 82, 446-456.

Prasad, S. & Chanussot, J. (2020). Introduction. En S. Prasad & J. Chanussot (Eds.). Hyperspectral image analysis: advances in machine learning and signal processing (1-4). Switzerland: Springer.

Proctor, C. (2018). Building UAV-hyperspectral system II. Hyperspectral sensor considerations and data processing. En Y. He & Q. Weng (Eds.). High spatial resolution remote sensing: data, analysis, and applications (49-70). Boca Raton, USA: CRC Press.

Qi, J., Inoue, Y. & Wiangwang, N. (2012). Hyperspectral remote sensing in global change studies. En: Thenkabail, P.S., LYON, G.J. & Hute, A. (Eds.). Hyperspectral remote sensing of vegetation, (pp. 69-89).USA: CRC Press.

Rivard, B., Sanchez-Azofeifa, A., Foley, S.H. & Calvo-Alvarado, J.C. (2008).Species classification of tropical tree leaf reflectance and dependence on selection of spectral bands. En Kalacska, M. & Sanchez-Azofeifa, G.A. (Eds.). Hyperspectral remote sensing of tropical and subtropical forests, (pp. 141-159). USA: CRC Press.

Rodríguez-Villamizar, J. (2015). Sistemas multiespectrales e hiperespectrales para la observación del territorio. Análisis y aplicación a la prospección de hidrocarburos (tesis de pregrado). Universidad Politécnica de Madrid, Madrid, España. Recuperado de oa.upm.es/34812/1/PFG_JULIAN_RODRIGUEZ_VILLAMIZAR.pdf

Sandino, J., Pegg, G., Gonzalez, F. & Smith, G. (2018). Aerial mapping or forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence. Sensor, 18, 1-17. doi: 10.3390/s18040944.

Schmid, T., Koch, M., Gumzzio, J. & Mather, P.M. (2004). A spectral library for a semi-arid wetland and its application to studies of wetland degradation using hyperspectral and multispectral data. International Journal of Remote Sensing, 25(13), 2485-2496. doi: 10.1080/0143116031000117001.

Schmidt, K. (2003). Hyperspectral Remote Sensing of Vegetation Species Distribution in a Saltmarsh (Thesis of Doctor). ITC, Enschede, The Netherlands.

Schmid, T., Rodríguez-Rastrero, M., Escribano, P., Palacios-Orueta, A., Ben-Dor, E., Plaza, A., Milewski, R., Huesca, M., Bracken, A., Cicuéndez, V., Pelayo, M. & Chabrillat, S. (2016). Characterization of soil erosion indicators using hyperspectral data from a Mediterranean rainfed cultivated region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), 845-860. doi: 10.1109/JSTARS.2015.2462125.

Schwab, K. (2016). The fourth industrial revolution. Switzerland: World Economic Forum.

Sobhan, I. (2007).Species discrimination from hyperspectral perspective (Thesis of Doctor degree). ITC, Enschede, The Netherlands.

Stevens, A., Van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B. & Ben-Dor, E. (2008). Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma, 144(1-2), 395-404.

Sun, L. & White, H.P. (2006). Spectral unmixing of hyperspectral imagery. Recuperado de http://hi.baidu.gisriver/item/5273674bff427408c0161344. (Canada Centre for Remote Sensing-CCRS).

Stoner, E.R., Baumgardner, M.F., Biehl, L.L. & Robinson, B.F. (1980). Atlas of soil reflectance properties. Indiana (USA): Department of Agronomy and the Laboratory for Application of Remote Sensing, Purdue University. 74p. (Research Bulletin 962).

Taylor, G. & Dehaan, R. (nd). Salinity mapping with hyperspectral imagery. Recuperado de http://www.geology.unsw.edu.au/research/R-sensing.

Thenkabail, P.S. (2002). Optimal hyperspectral narrow bands for discriminating agricultural crops. Remote Sensing Reviews, 20(4), 257-291.

Thenkabail, P.S. (2019). Preface. En P.S. Thenkabail, J.G. Lyon & A. Huete (Eds.). Hyperspectral indices and image classification for agriculture and vegetation (pp. xvii-xx). Boca Raton, USA: CRC Press.

Transon, J., d´Andrimont, R., Maugnard, A. & Defourny, P. (2018). Survey of hyperspectral earth observation applications from space in the Sentinel-2 context. Remote Sen., 10 (157). doi: 10.3390/rs10020157.

Ustin, S.L. & Santos, M.J. (2008). Analysis of hyperspectral remote sensing to detect and map tree decline at Ft. Benning, Georgia. California: University of California-CSTARS.

Viscarra, R.A. & McBratney, A.B. (2008). Diffuse Reflectance Spectroscopy as a Tool for Digital Soil Mapping. En Hartemink et al. (Eds.): Digital Soil Mapping with Limited Data. Amsterdam: Springer.

Volkan B., A., VanEs, H. M., Akbas, F., Durak, A. & Hively, W. D. (2010).Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments, 74, 229-238.

Wang, J., He, T., Lv, C., Chen, Y. & Jian, W. (2010). Mapping soil organic matter based on land degradation spectral response units using Hyperion Images. International Journal of Applied Earth Observation and Geoinformation, 125, 171-180.

Wang, L., Yan, J. & Ma, Y. (2020). Cloud computing in remote sensing. Boca Raton, USA: CRC Press.
Weis, M. & Sokefeld, M. (2010). Detection and identification of weeds. En Derke, E.C. et al. (Eds.). Precision Crop Protection – The Challenge and Use of Heterogeneity (pp. 119-132). Germany: Springer.

Wu, Z., Sun, J. & Zhang, Y. (2019). Big data processing on cloud computing architecture for hyperspectral remote sensing. En P.S. Thenkabail, J.G. Lyon & A. Huete (Eds.). Hyperspetral indices and image classification for agriculture and vegetation (105-132). Boca Raton, USA: CRC Press.

Zaslavsky, A., Perera, Ch. & Georgakopoulos, D. (2012). Sensing as a service and big data. (2012). Proceeding of the International Conference on Advances in Cloud Computing (ACC). 8, 21-29. Recuperado de https://arxiv.org/ftp/arxiv/papers/1301/1301.0159.pdf

Zhang, M., Quin, Z., Liu, X. & Ustin, S.L. (2003). Detection of Stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 4, 295-310.

Zhong, Y., Wang, X., Xu, Y., Jia, T., Cui, S., Wei, L., Ma, A. & Zhang, L. (2017). Mini UAV borne hyperspectral remote sensing: a review. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 23-28, july 2017. Fort Worth, TX, USA. doi: 10.1109/IGARSS.2017.8128354.

Zou, W., Jiang, W., Chen, G., Lu, Y. & Son, H. (2019). A survey of big data analytics for smart forestry. IEEE Access, 7, 46621-46636. doi: 10.1109/ACCESS.2019.2907999.

Cómo citar

APA

León Pérez, J. (2021). Imágenes hiperespectrales y sus aplicaciones en estudios de suelos, cultivos y   bosques, en la era de la cuarta revolución industrial. UD y la geomática, (16). Recuperado a partir de https://revistas.udistrital.edu.co/index.php/UDGeo/article/view/16959

ACM

[1]
León Pérez, J. 2021. Imágenes hiperespectrales y sus aplicaciones en estudios de suelos, cultivos y   bosques, en la era de la cuarta revolución industrial. UD y la geomática. 16 (may 2021).

ACS

(1)
León Pérez, J. Imágenes hiperespectrales y sus aplicaciones en estudios de suelos, cultivos y   bosques, en la era de la cuarta revolución industrial. U.D. geomatica 2021.

ABNT

LEÓN PÉREZ, J. Imágenes hiperespectrales y sus aplicaciones en estudios de suelos, cultivos y   bosques, en la era de la cuarta revolución industrial. UD y la geomática, [S. l.], n. 16, 2021. Disponível em: https://revistas.udistrital.edu.co/index.php/UDGeo/article/view/16959. Acesso em: 26 sep. 2021.

Chicago

León Pérez, Jonás. 2021. « en la era de la cuarta revolución industrial». UD y la geomática, n.º 16 (mayo). https://revistas.udistrital.edu.co/index.php/UDGeo/article/view/16959.

Harvard

León Pérez, J. (2021) « en la era de la cuarta revolución industrial»., UD y la geomática, (16). Disponible en: https://revistas.udistrital.edu.co/index.php/UDGeo/article/view/16959 (Accedido: 26septiembre2021).

IEEE

[1]
J. León Pérez, « en la era de la cuarta revolución industrial»., U.D. geomatica, n.º 16, may 2021.

MLA

León Pérez, J. « en la era de la cuarta revolución industrial». UD y la geomática, n.º 16, mayo de 2021, https://revistas.udistrital.edu.co/index.php/UDGeo/article/view/16959.

Turabian

León Pérez, Jonás. « en la era de la cuarta revolución industrial». UD y la geomática, no. 16 (mayo 20, 2021). Accedido septiembre 26, 2021. https://revistas.udistrital.edu.co/index.php/UDGeo/article/view/16959.

Vancouver

1.
León Pérez J. Imágenes hiperespectrales y sus aplicaciones en estudios de suelos, cultivos y   bosques, en la era de la cuarta revolución industrial. U.D. geomatica [Internet]. 20 de mayo de 2021 [citado 26 de septiembre de 2021];(16). Disponible en: https://revistas.udistrital.edu.co/index.php/UDGeo/article/view/16959

Descargar cita

Visitas

143

Descargas

Los datos de descargas todavía no están disponibles.