DOI:

https://doi.org/10.14483/2256201X.21457

Publicado:

27-06-2024

Número:

Vol. 27 Núm. 2 (2024): Julio-diciembre

Sección:

Artículos de investigación científica y tecnológica

Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites

Efecto de la adición de fibras del mesocarpio de palma aceitera (Elaeis guineensis Jacq.) en compuestos de cemento

Autores/as

Palabras clave:

Fiber cement composite, lignocellulosic fiber, mesocarp fiber, oil palm, physical and mechanical properties (en).

Palabras clave:

Compuesto de fibrocemento, fibra lignocelulósica, fibra de mesocarpio, palma aceitera, propiedades físico-mecánicas (es).

Resumen (en)

The construction industry's ongoing pursuit of eco-friendly materials has led to extensive research into fiber cement composites (FCC), particularly those utilizing natural fibers such as oil palm (Elaeis guineensis Jacq.) mesocarp fiber (OPMF) from Peru. This study examined the physical, mechanical, and chemical effects of adding different proportions of OPMF (0, 3, 6, and 9%) in manufacturing FCCs. This addition resulted in reduced values regarding density, porosity, and modulus of rupture, as well as in increased moisture content and thickness reduction. The FCC containing 3% OPMF exhibited the most favorable performance thanks to its higher density and its lower water absorption and porosity when compared to the control board (0%-OPMF). Micro-images revealed minor microcracks and interfacial gaps, indicative of debonding, which compromises the properties of the FCC. Furthermore, an infrared spectrum analysis demonstrated an increase in hydroxyl group vibrations with an increased fiber proportion.

Resumen (es)

La constante búsqueda de materiales ecológicos en la industria de la construcción ha llevado a una amplia investigación sobre los compuestos de fibrocemento (FCC), especialmente aquellos que utilizan fibras naturales como la fibra del mesocarpio de la palma de aceite (Elaeis guineensis Jacq.) (OPMF) de Perú. Este estudio examinó los efectos físicos, mecánicos y químicos de añadir diferentes proporciones de OPMF (0, 3, 6 y 9 %) en la fabricación de FCC. Esta adición resultó en valores reducidos en cuanto a densidad, porosidad y módulo de ruptura, así como un aumento en el contenido de humedad y una reducción del espesor. El FCC que contenía 3 % de OPMF mostró el rendimiento más favorable gracias a su mayor densidad y su menor absorción de agua y porosidad en comparación con la placa de control (0 % de OPMF). Las microimágenes obtenidas revelaron microfisuras menores y huecos interfaciales, indicativos de desprendimiento, lo que compromete las propiedades del FCC. Además, un análisis del espectro infrarrojo demostró un aumento en las vibraciones del grupo hidroxilo con el aumento en la proporción de fibra.

Referencias

Abdalla, J. A., Hawileh, R. A., Bahurudeen, A., Jyothsna, G., Sofi, A., Shanmugam, V., & Thomas, B. S. (2023). A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Studies in Construction Materials, 19, e02244. https://doi.org/10.1016/j.cscm.2023.e02244

Abdelmajeed Labib, W. (2019). Utilisation of date palm fibres in cement-based composites: A feasibility study. IOP Conference Series: Materials Science and Engineering, 596(1), 012028. https://doi.org/10.1088/1757-899X/596/1/012028

Adamu, M., Marouf, M. L., Ibrahim, Y. E., Ahmed, O. S., Alanazi, H., & Marouf, A. L. (2022). Modeling and optimization of the mechanical properties of date fiber reinforced concrete containing silica fume using response surface methodology. Case Studies in Construction Materials, 17, e01633. https://doi.org/10.1016/j.cscm.2022.e01633

Aguilar Gallegos, N., Arias Arias, N. A., & Santoyo Cortés, V. H. (2013). La palma de aceite (Elaeis guinensis Jacq.): Avances y retos en la gestión de la innovación (1st ed.). Universidad Autónoma Chapingo. https://repositorio.chapingo.edu.mx/items/6472388d-2443-4986-badd-c3cc3d7988d2

Alatshan, F., Altlomate, A. M., Mashiri, F., & Alamin, W. (2017). Effect of date palm fibers on the mechanical properties of concrete. International Journal of Sustainable Building Technology and Urban Development, 8(2), 68-80. https://doi.org/10.12972/susb.20170007

Alencar, M. A. S., Rambo, M. K. D., Botelho, G. L. G. T., Barros, P. M. M., Sergio, R. L., Borges, M. S., & Bertuol, D. (2023). Feasibility study of incorporation of bamboo plant fibers in cement matrices. Sustainable Chemistry for the Environment, 2, 100020. https://doi.org/10.1016/j.scenv.2023.100020

Ali, B., Hawreen, A., Ben Kahla, N., Talha Amir, M., Azab, M., & Raza, A. (2022). A critical review on the utilization of coir (coconut fiber) in cementitious materials. Construction and Building Materials, 351, 128957. https://doi.org/10.1016/j.conbuildmat.2022.128957

Ali-Boucetta, T., Ayat, A., Laifa, W., & Behim, M. (2021). Treatment of date palm fibres mesh: Influence on the rheological and mechanical properties of fibre-cement composites. Construction and Building Materials, 273, 121056. https://doi.org/10.1016/j.conbuildmat.2020.121056

Altez Basaldúa, A. G., Cárdenas Oscanoa, A. J., Araujo Flores, M., & Sulbarán Rangel, B. C. (2020). Efecto de pudrición por hongos en las propiedades físicas y mecánicas del compuesto bambú-polipropileno. Revista Mexicana de Ciencias Forestales, 11(62), 757. https://doi.org/10.29298/rmcf.v11i62.757

Arango-Pérez, S. A., Gonzales-Mora, H. E., Ponce-Álvarez, S. P., Gutarra-Espinoza, A. A., & Cárdenas-Oscanoa, A. J. (2024). Assessment of cellulose nanofibers from bolaina blanca wood obtained at three shaft heights. Maderas, Ciencia y Tecnología, 26, 1-30. https://doi.org/10.4067/S0718-221X2024005XXXXXX

Arao, Y., Fujiura, T., Itani, S., & Tanaka, T. (2015). Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Composites Part B: Engineering, 68, 200-206. https://doi.org/10.1016/j.compositesb.2014.08.032

Asyraf, M. R. M., Ishak, M. R., Syamsir, A., Nurazzi, N. M., Sabaruddin, F. A., Shazleen, S. S., Norrrahim, M. N. F., Rafidah, M., Ilyas, R. A., Rashid, M. Z. A., & Razman, M. R. (2022). Mechanical properties of oil palm fibre-reinforced polymer composites: A review. Journal of Materials Research and Technology, 17, 33-65. https://doi.org/10.1016/j.jmrt.2021.12.122

Awad, S., Ghaffar, S. H., Hamouda, T., Midani, M., Katsou, E., & Fan, M. (2022). Critical evaluation of date palm sheath fibre characteristics as a reinforcement for developing sustainable cementitious composites from waste materials. Biomass Conversion and Biorefinery, 14, 6887-6902. https://doi.org/10.1007/s13399-022-02759-9

Bajuri, F., Mazlan, N., & Ishak, M. R. (2017). Effect of silica nanoparticles in kenaf reinforced epoxy: Flexural and compressive properties. Pertanika Journal of Science and Technology, 25(3), 1029-1038. http://www.pertanika.upm.edu.my/pjst/browse/regular-issue?article=JST-S0280-2017

Banco Central de Reserva del Perú (BCRP) (2023). Producción agropecuaria por principales productos (miles de toneladas)—Agrícola—Agroexportación e Industrial—Palma Aceitera [dataset]. BCRP. https://estadisticas.bcrp.gob.pe/estadisticas/series/anuales/resultados/PM05090AA/html

Bellel, N., & Bellel, N. (2023). Sustainable heat insulation composites based on Portland cement reinforced with date palm fibers. Journal of Engineered Fibers and Fabrics, 18, 155892502311577. https://doi.org/10.1177/15589250231157718

Cárdenas-Oscanoa, A. J., Fuentes Talavera, F. J., Robledo Ortiz, J. R., Meza Contreras, J. C., & Gonzáles Cruz, R. (2020). Efecto del intemperismo y biodeterioro en compuestos plástico-madera (CPM) elaborados con borato de zinc. Revista Mexicana de Ciencias Forestales, 12(63), 801. https://doi.org/10.29298/rmcf.v12i63.801

Choi, Y. C. (2022). Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites. Case Studies in Construction Materials, 17, e01690. https://doi.org/10.1016/j.cscm.2022.e01690

Cipra-Rodriguez, J. A., Gonzales Mora, H. E., & Cárdenas-Oscanoa, A. J. (2022). Characterization of MDF produced with bolaina (Guazuma crinita Mart.) wood residues from plantation. Madera y Bosques, 28(3), e2832433. https://doi.org/10.21829/myb.2022.2832433

Córdova Contreras, A. R., Cárdenas Oscanoa, A. J., & Gonzáles Mora, H. E. (2020). Caracterización física y mecánica de compuestos de Guazuma crinita Mart. A base de polipropileno virgen. Revista Mexicana de Ciencias Forestales, 11(57), 621. https://doi.org/10.29298/rmcf.v11i57.621

Coutts, R. S. P. (2005). A review of Australian research into natural fibre cement composites. Cement and Concrete Composites, 27(5), 518-526. https://doi.org/10.1016/j.cemconcomp.2004.09.003

De Souza Castoldi, R., Liebscher, M., Silva De Souza, L. M., Mechtcherine, V., Prioli Menezes, R., & De Andrade Silva, F. (2023). Effect of polymeric fiber coating on the mechanical performance, water absorption, and interfacial bond with cement-based matrices. Construction and Building Materials, 404, 133222. https://doi.org/10.1016/j.conbuildmat.2023.133222

Deutsches Institut fur Normung (DIN) (1965a). DIN 52361: 1965-04. Testing of wood chipcomposites – Determination of dimensions, raw density and moisture content. DIN.

Deutsches Institut fur Normung (DIN) (1965b). DIN 52364: 1965-04. Testing wood chipcomposite – Determination of moisture-related thickness variation. DIN.

Deutsches Institut fur Normung (DIN) (1965c). DIN 52365: 1965-04. Testing wood chipcomposite – Determination of tensile strength vertical to the chipboard plane. DIN.

Deutsches Institut fur Normung (DIN) (1982). DIN 53291: 1982-02. Testing of core composites – Compression test perpendicular to the surface layer plane.

Ezugwu, E. K., Calabria-Holley, J., & Paine, K. (2023). Physico-mechanical and morphological behavior of hydrothermally treated plant fibers in cementitious composites. Industrial Crops and Products, 200, 116832. https://doi.org/10.1016/j.indcrop.2023.116832

Feng, B., Liu, J., Lu, Z., Zhang, M., & Tan, X. (2023). Study on properties and durability of alkali activated rice straw fibers cement composites. Journal of Building Engineering, 63, 105515. https://doi.org/10.1016/j.jobe.2022.105515

Fernando, S., Gunasekara, C., Shahpasandi, A., Nguyen, K., Sofi, M., Setunge, S., Mendis, P., & Rahman, Md. T. (2023). Sustainable cement composite integrating waste cellulose fibre: A comprehensive review. Polymers, 15(3), 520. https://doi.org/10.3390/polym15030520

Goh, K. J., Wong, C. K., & Ng, P. H. C. (2017). Oil palm. In Elsevier (Eds.) Encyclopedia of Applied Plant Sciences (pp. 382-390). Elsevier. https://doi.org/10.1016/B978-0-12-394807-6.00176-3

Hamada, H. M., Shi, J., Al Jawahery, M. S., Majdi, A., Yousif, S. T., & Kaplan, G. (2023). Application of natural fibres in cement concrete: A critical review. Materials Today Communications, 35, 105833. https://doi.org/10.1016/j.mtcomm.2023.105833

Hasan, K. M. F., Horváth, P. G., & Alpár, T. (2022). Lignocellulosic fiber cement compatibility: A state of the art review. Journal of Natural Fibers, 19(13), 5409-5434. https://doi.org/10.1080/15440478.2021.1875380

Ishak, M. R., Leman, Z., Sapuan, S. M., Rahman, M. Z. A., & Anwar, U. M. K. (2013). Chemical composition and FT-IR spectra of sugar palm (Arenga pinnata) fibers obtained from different heights. Journal of Natural Fibers, 10(2), 83-97. https://doi.org/10.1080/15440478.2012.733517

Jamshaid, H., Mishra, R. K., Raza, A., Hussain, U., Rahman, Md. L., Nazari, S., Chandan, V., Muller, M., & Choteborsky, R. (2022). Natural cellulosic fiber reinforced concrete: Influence of fiber type and loading percentage on mechanical and water absorption performance. Materials, 15(3), 874. https://doi.org/10.3390/ma15030874

Jiang, D., Lv, S., Jiang, D., Xu, H., Kang, H., Song, X., & He, S. (2023). Effect of modification methods on water absorption and strength of wheat straw fiber and its cement-based composites. Journal of Building Engineering, 71, 106466. https://doi.org/10.1016/j.jobe.2023.106466

Junta Nacional de Palma Aceitera (JUNPALMA) (Ed.) (2022). Palma aceitera en el Perú: Reporte estadístico 2021. JUNPALMA. https://junpalmaperu.org/publicaciones/palma-aceitera-en-el-peru-2021/

Kareche, A., Agoudjil, B., Haba, B., & Boudenne, A. (2020). Study on the durability of new construction materials based on mortar reinforced with date palm fibers wastes. Waste and Biomass Valorization, 11(7), 3801-3809. https://doi.org/10.1007/s12649-019-00669-y

Khorami, M., & Ganjian, E. (2011). Comparing flexural behaviour of fibre–cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building Materials, 25(9), 3661-3667. https://doi.org/10.1016/j.conbuildmat.2011.03.052

Komuraiah, A., Kumar, N. S., & Prasad, B. D. (2014). Chemical composition of natural fibers and its influence on their mechanical properties. Mechanics of Composite Materials, 50(3), 359-376. https://doi.org/10.1007/s11029-014-9422-2

Kriker, A., Debicki, G., Bali, A., Khenfer, M. M., & Chabannet, M. (2005). Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composites, 27(5), 554-564. https://doi.org/10.1016/j.cemconcomp.2004.09.015

La Rosa Salazar, M. A. (2021). Preocupaciones y cambios de política: ¿hacia la sostenibilidad de la palma aceitera en la Amazonía? Economía Agraria y Recursos Naturales, 21(1), 59. https://doi.org/10.7201/earn.2021.01.03

Lertwattanaruk, P., & Suntijitto, A. (2015). Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials, 94, 664-669. https://doi.org/10.1016/j.conbuildmat.2015.07.154

Liu, K., Wen, Z., Zheng, Y., Xu, Y., Yu, J., Ye, J., Zhang, W., Zhong, W., Gao, X., & Liu, H. (2023). Microstructural feature of cellulose fibre in cement-based composites at different curing temperature. Journal of Building Engineering, 63, 105569. https://doi.org/10.1016/j.jobe.2022.105569

Momoh, E. O., & Osofero, A. I. (2020). Recent developments in the application of oil palm fibers in cement composites. Frontiers of Structural and Civil Engineering, 14(1), 94-108. https://doi.org/10.1007/s11709-019-0576-9

Neyra-Vasquez, J. Y., Panduro-Pisco, G., Díaz-Zúñiga, E. J., & Iannacone, J. (2022). Caracterización física y química: Biomasa residual de la palma (Elaeis guineensis Jacq.) en la Amazonia peruana. Agronomía Mesoamericana, 33(3), 48170. https://doi.org/10.15517/am.v33i3.48170

Pacheco-Torgal, F., & Jalali, S. (2011). Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials, 25(2), 575-581. https://doi.org/10.1016/j.conbuildmat.2010.07.024

Ramírez Contreras, N. E., Arévalo, A., & García Núñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41-54.

Raut, A. N., & Gomez, C. P. (2016). Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Construction and Building Materials, 126, 476-483. https://doi.org/10.1016/j.conbuildmat.2016.09.034

Ritchie, H., & Roser, M. (2021). Palm oil. Our World in Data. https://ourworldindata.org/palm-oil

RStudio Team (2023). RStudio: Integrated Development for R version 4.2.3 [Software]. RStudio Team. http://www.R-project.org

Savastano, H., Agopyan, V., Nolasco, A. M., & Pimentel, L. (1999). Plant fibre reinforced cement components for roofing. Construction and Building Materials, 13(8), 433-438. https://doi.org/10.1016/S0950-0618(99)00046-X

Savastano, H., Warden, P. G., & Coutts, R. S. P. (2005). Microstructure and mechanical properties of waste fibre–cement composites. Cement and Concrete Composites, 27(5), 583-592. https://doi.org/10.1016/j.cemconcomp.2004.09.009

Technical Association of the Pulp and Paper Industry (TAPPI) (1993). T. 211. Om-93. Ash in Wood, pulp, paper and papercomposite: Combustion at 525°C. TAPPI.

Technical Association of the Pulp and Paper Industry (TAPPI) (1997). T. 204. Cm-97. Solvent extractives of wood and pulp. TAPPI.

Technical Association of the Pulp and Paper Industry (TAPPI) (1998). T. 222. Om-98. Acid-insoluble lignin in wood and pulp. TAPPI.

Technical Association of the Pulp and Paper Industry (TAPPI). (1999). T. 207. Cm-99. Water solubility of wood and pulp. TAPPI.

Van Dam, J. (2016). Subproductos de la palma de aceite como materias primas de biomasa. Revista Palmas, 37(Special Issue), 149-156. https://publicaciones.fedepalma.org/index.php/palmas/article/view/11930

Vargas, E., & Zumbado, M. (2003). Composición de los subproductos de la industrialización de la palma africana utilizados en la alimentación animal en Costa Rica. Agronomía Costarricense, 27(1), 7-18.

Wahab, R., Sulaiman, M. S., Ghani, R. S. M., & Mokhtar, N. (2019). Properties of composite boards properties from Elaeis guineensis empty fruit bunch. Borneo Journal of Sciences and Technology, 1(1), 53-61. https://doi.org/10.35370/bjost.2019.1.1-11

Cómo citar

APA

Gamarra-Romero, L. F., Gonzales Mora, H. E., Cipra-Rodriguez, J. A., y Cárdenas-Oscanoa, A. J. (2024). Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites. Colombia forestal, 27(2), e21457. https://doi.org/10.14483/2256201X.21457

ACM

[1]
Gamarra-Romero, L.F. et al. 2024. Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites. Colombia forestal. 27, 2 (jun. 2024), e21457. DOI:https://doi.org/10.14483/2256201X.21457.

ACS

(1)
Gamarra-Romero, L. F.; Gonzales Mora, H. E.; Cipra-Rodriguez, J. A.; Cárdenas-Oscanoa, A. J. Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites. Colomb. for. 2024, 27, e21457.

ABNT

GAMARRA-ROMERO, Luis Ferroel; GONZALES MORA, Héctor Enrique; CIPRA-RODRIGUEZ, José Alberto; CÁRDENAS-OSCANOA, Aldo Joao. Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites. Colombia forestal, [S. l.], v. 27, n. 2, p. e21457, 2024. DOI: 10.14483/2256201X.21457. Disponível em: https://revistas.udistrital.edu.co/index.php/colfor/article/view/21457. Acesso em: 30 jun. 2024.

Chicago

Gamarra-Romero, Luis Ferroel, Héctor Enrique Gonzales Mora, José Alberto Cipra-Rodriguez, y Aldo Joao Cárdenas-Oscanoa. 2024. «Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites». Colombia forestal 27 (2):e21457. https://doi.org/10.14483/2256201X.21457.

Harvard

Gamarra-Romero, L. F. (2024) «Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites», Colombia forestal, 27(2), p. e21457. doi: 10.14483/2256201X.21457.

IEEE

[1]
L. F. Gamarra-Romero, H. E. Gonzales Mora, J. A. Cipra-Rodriguez, y A. J. Cárdenas-Oscanoa, «Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites», Colomb. for., vol. 27, n.º 2, p. e21457, jun. 2024.

MLA

Gamarra-Romero, Luis Ferroel, et al. «Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites». Colombia forestal, vol. 27, n.º 2, junio de 2024, p. e21457, doi:10.14483/2256201X.21457.

Turabian

Gamarra-Romero, Luis Ferroel, Héctor Enrique Gonzales Mora, José Alberto Cipra-Rodriguez, y Aldo Joao Cárdenas-Oscanoa. «Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites». Colombia forestal 27, no. 2 (junio 27, 2024): e21457. Accedido junio 30, 2024. https://revistas.udistrital.edu.co/index.php/colfor/article/view/21457.

Vancouver

1.
Gamarra-Romero LF, Gonzales Mora HE, Cipra-Rodriguez JA, Cárdenas-Oscanoa AJ. Effect of Adding Oil Palm (Elaeis guineensis Jacq.) Mesocarp Fibers to Cement Composites. Colomb. for. [Internet]. 27 de junio de 2024 [citado 30 de junio de 2024];27(2):e21457. Disponible en: https://revistas.udistrital.edu.co/index.php/colfor/article/view/21457

Descargar cita

Visitas

12

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Loading...