DOI:

https://doi.org/10.14483/2256201X.23488

Publicado:

01-01-2026

Número:

Vol. 29 Núm. 1 (2026): Enero-junio

Sección:

Artículos de investigación científica y tecnológica

Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards

Efectos de la adición de fibras pretratadas de mesocarpio de castaño (Bertholletia excelsa) a tableros de fibrocemento

Autores/as

Palabras clave:

Chestnut (Bertholletia excelsa), fiber–cement board, mesocarp fibers, NaOH pretreatment (en).

Palabras clave:

Castaña (Bertholletia excelsa), tablero de fibrocemento, fibras de mesocarpio, pre-tratamiento de NaOH (es).

Resumen (en)

Natural fibers have gained relevance due to their renewable nature, which makes them promising candidates as reinforcement materials. Chestnut (Bertholletia excelsa) mesocarp fibers have been found to be suitable for incorporation into fiber-cement boards. In this work, two types of boards were produced, with fiber contents of 3, 6, and 9%: one type used fibers pretreated in a 10% NaOH alkali solution, and the other one was left untreated. Comprehensive chemical and analytical assessments were carried out, accompanied by mechanical performance evaluations. The pretreatment reduced the fiber holocellulose content by 5.32%. Incorporating chestnut fibers decreased the board density by up to 13%, regardless of the treatment. The most favorable outcomes regarding the reduction in thickness (up to 3.4% compared to the control group) were observed in samples containing 3% fiber. Notably, boards with pretreated fibers surpassed the Peruvian national standards by 10%. These results position chestnut mesocarp fibers as a promising reinforcement for fiber-cement boards and warrant further investigation. 

Resumen (es)

Las fibras naturales han ganado relevancia por su carácter renovable, lo que las hace candidatas promisorias como materiales de refuerzo. Se ha encontrado que las fibras del mesocarpio de castaña (Bertholletia excelsa) son aptas para el uso en tableros de fibrocemento. En este trabajo se fabricaron dos tipos de tableros, con 3, 6 y 9 % de fibra: uno de estos tipos utilizó fibras pretratadas en una solución alcalina al 10 % de NaOH, y el otro se dejó sin tratar. Se realizaron evaluaciones químicas y analíticas, acompañadas por valoraciones de rendimiento mecánico. El pretratamiento redujo el contenido de holocelulosa de las fibras en un 5.32 %. La incorporación de fibras disminuyó la densidad de los tableros hasta en un 13 %, sin importar el tratamiento. Los mejores resultados en cuanto a la reducción de espesor (hasta 3.4 % con respecto al grupo control) se observó en muestras con 3 % de fibra. Cabe destacar que los tableros con fibras pretratadas superaron los estándares nacionales del Perú en un 10 %. Estos resultados posicionan las fibras de mesocarpio de castaña como refuerzo para tableros de fibrocemento y requieren mayor estudio. 

Referencias

American Society for Testing and Materials (ASTM) (2022). Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM.

American Society for Testing and Materials (ASTM) (2016). ASTM C1185-08 Standard Test Methods for Sampling and Testing Non-Asbestos Fiber-Cement Flat Sheet, Roofing and Siding Shingles, and Clapboards. ASTM.

American Society for Testing and Materials (ASTM) (2022). ASTM-C1186-22 Standard Specification for Flat Fiber-Cement Sheets (Nos. C1186-22). ASTM.

Arango-Pérez, S. A., Gonzales-Mora, H. E., Ponce-Álvarez, S. P., Gutarra-Espinoza, A. A., & Cárdenas-Oscanoa, A. J. (2023). Assessment of cellulose nanofibers from bolaina blanca wood obtained at three shaft heights. Maderas-Ciencia y Tecnología, 26, e1824. https://doi.org/10.22320/s0718221x/2024.18

Atúncar Vilela, W. B., Gonzales Mora, H. E., Arango, S., & Cárdenas-Oscanoa, A. J. (2024). Elaboración de papel con fibra virgen y reciclada reforzada con celulosa nanofibrilada de Guadua angustifolia. Colombia Forestal, 27(2), e20917. https://doi.org/10.14483/2256201X.20917

Campello, E. F., Pereira, M. V., Darwish, F. A., & Ghavami, K. (2016). On the fatigue behavior of bamboo pulp reinforced cementitious composites. Procedia Structural Integrity, 2, 2929-2935. https://doi.org/10.1016/j.prostr.2016.06.366

Çavdar, A. D., Yel, H., & Torun, S. B. (2022). Microcrystalline cellulose addition effects on the properties of wood cement boards. Journal of Building Engineering, 48, 103975. https://doi.org/10.1016/j.jobe.2021.103975

Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B., & Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52(3), 1252-1260. https://doi.org/10.1021/ie300607r

Chen, Y., Li, Y., Zhang, C., Qi, H., & Hubbe, M. A. (2022). Holocellulosic fibers and nanofibrils using peracetic acid pulping and sulfamic acid esterification. Carbohydrate Polymers, 295, 119902. https://doi.org/10.1016/j.carbpol.2022.119902

Choi, H., & Choi, Y. C. (2021). Setting characteristics of natural cellulose fiber reinforced cement composite. Construction and Building Materials, 271, 121910. https://doi.org/10.1016/j.conbuildmat.2020.121910

Cipra Rodriguez, J. A., Gonzales Mora, H. E., & Cárdenas Oscanoa, A. J. (2022). Characterization of MDF produced with bolaina (Guazuma crinita Mart.) wood residues from plantation. Madera y Bosques, 28(3), e2832433. https://doi.org/10.21829/myb.2022.2832433

Çitlaci̇fci̇, H., Kiliç Pekgözlü, A., & Gülsoy, S. K. (2022). Characterization of cheestnut shell. Bartın University International Journal of Natural and Applied Sciences, 5(2), 145-150. https://doi.org/10.55930/jonas.1207620

Córdova Contreras, A. R., Cárdenas Oscanoa, A. J., & Gonzáles Mora, H. E. (2020). Physical and mechanical characterization of Guazuma crinita Mart. composites based on virgin polypropylene. Revista Mexicana de Ciencias Forestales, 11(57), 1-28. https://doi.org/10.29298/rmcf.v11i57.621

Correia, V. C., Santos, S. F., Savastano Jr, H., & John, V. M. (2018). Utilization of vegetable fibers for production of reinforced cementitious materials. RILEM Technical Letters, 2, 145-154. https://doi.org/10.21809/rilemtechlett.2017.48

Deutsches Institut für Normung (DIN). (1965a, abril). Testing of wood chipboards; bending test, determination of bending strength (DIN 523621:196504) [Withdrawn standard]. Beuth Verlag, /DIN.

Deutsches Institut für Normung (DIN) (1965b, abril). Testing of wood chipboards; determination of dimensions, raw density and moisture content (DIN 52361:196504) [Withdrawn standard]. Beuth Verlag, DIN.

Deutsches Institut für Normung (DIN) (1965c, abril). Testing of wood chipboards; determination of variation in thickness due to moisture (DIN 52364:196504) [Withdrawn standard]. Beuth Verlag, DIN.

do Amaral, L. M., Rodrigues, C. D. S., & Poggiali, F. S. J. (2022). Hornification on vegetable fibers to improve fiber-cement composites: A critical review. Journal of Building Engineering, 48, 103947. https://doi.org/10.1016/j.jobe.2021.103947

Fernández-Carrasco, L., Claramunt, J., & Ardanuy, M. (2014). Autoclaved cellulose fibre reinforced cement: Effects of silica fume. Construction and Building Materials, 66, 138-145. https://doi.org/10.1016/j.conbuildmat.2014.05.050

Ferraz, P. F. P., Mendes, R. F., Marin, D. B., Paes, J. L., Cecchin, D., & Barbari, M. (2020). Agricultural Residues of Lignocellulosic Materials in Cement Composites. Applied Sciences, 10(22), 8019. https://doi.org/10.3390/app10228019

Fonseca, C. S., Silva, M. F., Mendes, R. F., Hein, P. R. G., Zangiacomo, A. L., Savastano, H., & Tonoli, G. H. D. (2019). Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites. Construction and Building Materials, 211, 517-527. https://doi.org/10.1016/j.conbuildmat.2019.03.236

Gamarra-Romero, L. F., Gonzales Mora, H. E., Cipra-Rodríguez, J. A., & Cárdenas-Oscanoa, A. J. (2024). Effect of adding oil palm (Elaeis guineensis Jacq.) mesocarp fibers to cement composites. Colombia Forestal, 27(2), e21457. https://doi.org/10.14483/2256201X.21457

Hasan, K. M. F., Horváth, P. G., & Alpár, T. (2022). Lignocellulosic fiber cement compatibility: A state of the art review. Journal of Natural Fibers, 19(13), 5409-5434. https://doi.org/10.1080/15440478.2021.1875380

Hincapié Rojas, D. F., Pineda-Gómez, P., & Guapacha-Flores, J. F. (2020). Effect of silica nanoparticles on the mechanical and physical properties of fibercement boards. Journal of Building Engineering, 31, 101332. https://doi.org/10.1016/j.jobe.2020.101332

Kandel, K. P., Adhikari, M., Kharel, M., Aryal, G. M., Pandeya, S., Joshi, M. K., Dahal, B., Gautam, B., & Neupane, B. B. (2022). Comparative study on material properties of wood-ash alkali and commercial alkali treated Sterculia fiber. Cellulose, 29(10), 5913-5922. https://doi.org/10.1007/s10570-022-04610-w

Karaseva, V., Bergeret, A., Lacoste, C., Ferry, L., & Fulcrand, H. (2019). Influence of extraction conditions on chemical composition and thermal properties of chestnut wood extracts as tannin feedstock. ACS Sustainable Chemistry & Engineering, 7(20), 17047-17054. https://doi.org/10.1021/acssuschemeng.9b03000

Kurpińska, M., Pawelska-Mazur, M., Gu, Y., & Kurpiński, F. (2022). The impact of natural fibers’ characteristics on mechanical properties of the cement composites. Scientific Reports, 12(1), 20565. https://doi.org/10.1038/s41598-022-25085-6

Laverde, V., Marin, A., Benjumea, J. M., & Rincón Ortiz, M. (2022). Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review. Construction and Building Materials, 340, 127729. https://doi.org/10.1016/j.conbuildmat.2022.127729

Lilargem Rocha, D., Tambara Júnior, L., Marvila, M., Pereira, E., Souza, D., & de Azevedo, A. (2022). A Review of the use of natural fibers in cement composites: Concepts, applications and Brazilian history. Polymers, 14(10), 2043. https://doi.org/10.3390/polym14102043

Llerena, A. (2014). Estudio de compuestos cementíceos reforzados con fibras vegetales: Evaluación previa del comportamiento de un panel de cemento blanco con adición de metacaolín reforzado con un textil notejido de fibras largas de lino y cáñamo [Master’s thesis, Universitat Politècnica de Catalunya]. http://hdl.handle.net/2099.1/25365

Mármol, G., & Savastano, H. (2017). Study of the degradation of non-conventional MgO-SiO2 cement reinforced with lignocellulosic fibers. Cement and Concrete Composites, 80, 258-267. https://doi.org/10.1016/j.cemconcomp.2017.03.015

Martinelli, F. R. B., Ribeiro, F. R. C., Marvila, M. T., Monteiro, S. N., Filho, F. D. C. G., & Azevedo, A. R. G. D. (2023). A Review of the use of coconut fiber in cement composites. Polymers, 15(5), 1309. https://doi.org/10.3390/polym15051309

Mohr, B. J., Biernacki, J. J., & Kurtis, K. E. (2006). Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites. Cement and Concrete Research, 36(7), 1240-1251. https://doi.org/10.1016/j.cemconres.2006.03.020

Nagaraja Ganesh, B., Rekha, B., Mohanavel, V., & Ganeshan, P. (2023). Exploring the Possibilities of Producing Pulp and Paper from Discarded Lignocellulosic Fibers. Journal of Natural Fibers, 20(1), 2137618. https://doi.org/10.1080/15440478.2022.2137618

Petrechen, G., Arduin, M., & Ambrósio, J. (2019). Morphological Characterization of Brazil Nut Tree (Bertholletia excelsa) Fruit Pericarp. Journal of Renewable Materials, 7(7), 683-692. https://doi.org/10.32604/jrm.2019.04588

Rocco, C. G., & Elices, M. (2009). Effect of aggregate shape on the mechanical properties of a simple concrete. Engineering Fracture Mechanics, 76(2), 286-298. https://doi.org/10.1016/j.engfracmech.2008.10.010

Sales, S. L. T., Aldamia, F. J., Gonzaga, P. S., Montesclaros, A. J. S., & Lawagon, C. P. (2022). Properties of fiber cement boards influenced by BSCH (banana stem and corn husk) fibers and citric acid addition. Key Engineering Materials, 913, 125-130. https://doi.org/10.4028/p-qv513a

Soares, C., Moura, E., Arenhardt, V., Deliza, E. E. V., & Pedro Filho, F. D. S. (2023). Biotechnology management in the Amazon and the production of polypropylene / Brazil nut shell fiber biocomposite. Revista de Gestão e Secretariado, 14(7), 10734-10748. https://doi.org/10.7769/gesec.v14i7.2424

Soltan, D. G., das Neves, P., Olvera, A., Savastano Junior, H., & Li, V. C. (2017). Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior. Industrial Crops and Products, 103, 1-12. https://doi.org/10.1016/j.indcrop.2017.03.016

Sonego, M., Fleck, C., & Pessan, L. A. (2019). Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials. Bioinspiration & Biomimetics, 14(5), 056002. https://doi.org/10.1088/1748-3190/ab2298

Sonego, M., Madia, M., Eder, M., Fleck, C., & Pessan, L. A. (2021). Microstructural features influencing the mechanical performance of the Brazil nut (Bertholletia excelsa) mesocarp. Journal of the Mechanical Behavior of Biomedical Materials, 116, 104306. https://doi.org/10.1016/j.jmbbm.2020.104306

Suwan, T., Maichin, P., Fan, M., Jitsangiam, P., Tangchirapat, W., & Chindaprasirt, P. (2022). Influence of alkalinity on self-treatment process of natural fiber and properties of its geopolymeric composites. Construction and Building Materials, 316, 125817. https://doi.org/10.1016/j.conbuildmat.2021.125817

Technical Association of the Pulp and Paper Industry (TAPPI) (2017). Solvent Extractives of Wood and Pulp, Test Method T 204 cm-17. TAPPI.

Technical Association of the Pulp and Paper Industry (TAPPI) (2022). Water solubility of wood and pulp, Test Method T 207 cm-22. TAPPI.

Technical Association of the Pulp and Paper Industry (TAPPI) (2006). Fiber Length of Pulp by Classification, Test Method T 233 cm-06. TAPPI.

Technical Association of the Pulp and Paper Industry (TAPPI) (2021). Acid-insoluble lignin in wood and pulp, Test Method T 222 om-21. TAPPI.

Technical Association of the Pulp and Paper Industry (TAPPI) (2015). Holocellulose in wood (T 9 wd 75). TAPPI Press. TAPPI.

Teixeira, J. N., Silva, D. W., Vilela, A. P., Savastano Junior, H., de Siqueira Brandão Vaz, L. E. V., & Mendes, R. F. (2020). Lignocellulosic materials for fiber cement production. Waste and Biomass Valorization, 11(5), 2193-2200. https://doi.org/10.1007/s12649-018-0536-y

Tonoli, G. H. D., Rodrigues Filho, U. P., Savastano, H., Bras, J., Belgacem, M. N., & Rocco Lahr, F. A. (2009). Cellulose modified fibres in cement based composites. Composites Part A: Applied Science and Manufacturing, 40(12), 2046-2053. https://doi.org/10.1016/j.compositesa.2009.09.016

Wang, Y., Lindström, M. E., & Henriksson, G. (2014). Increased degradability of cellulose by dissolution in cold alkali. BioResources, 9(4), 7566-7578. https://doi.org/10.15376/biores.9.4.7566-7578

Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1-16. https://doi.org/10.1016/j.cemconres.2015.02.019

Wei, J., & Meyer, C. (2016). Utilization of rice husk ash in green natural fiber-reinforced cement composites: Mitigating degradation of sisal fiber. Cement and Concrete Research, 81, 94-111. https://doi.org/10.1016/j.cemconres.2015.12.001

Yusuf, M. O. (2023). Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Applied Sciences, 13(5), 3353. https://doi.org/10.3390/app13053353

Zavaleta-Cavero, D. A., Chumpitaz-Príncipe, D. A., Gutarra-Espinoza, A. A., Cárdenas-Oscanoa, A. J., Gonzales-Mora, H. E., Quino-Favero, J. M., Gómez-Maldonado, D., Peresin, M. S., & Ponce-Álvarez, S. P. (2024). From Bolaina Blanca wood fibers to antimicrobial films: Characterization and application in the food industry using copper nanoparticles. Journal of Natural Fibers, 21(1), 2431314. https://doi.org/10.1080/15440478.2024.2431314

Cómo citar

APA

Mori-Seminario, C. E., Gonzales-Mora, H. E., Gamarra-Bustamante, J. A., y Cárdenas-Oscanoa, A. J. (2026). Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards . Colombia forestal, 29(1), e23488. https://doi.org/10.14483/2256201X.23488

ACM

[1]
Mori-Seminario, C.E. et al. 2026. Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards . Colombia forestal. 29, 1 (ene. 2026), e23488. DOI:https://doi.org/10.14483/2256201X.23488.

ACS

(1)
Mori-Seminario, C. E.; Gonzales-Mora, H. E.; Gamarra-Bustamante, J. A.; Cárdenas-Oscanoa, A. J. Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards . Colomb. for. 2026, 29, e23488.

ABNT

MORI-SEMINARIO, Carlos Enrique; GONZALES-MORA, Hector Enrique; GAMARRA-BUSTAMANTE, Julio André; CÁRDENAS-OSCANOA, Aldo Joao. Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards . Colombia forestal, [S. l.], v. 29, n. 1, p. e23488, 2026. DOI: 10.14483/2256201X.23488. Disponível em: https://revistas.udistrital.edu.co/index.php/colfor/article/view/23488. Acesso em: 2 feb. 2026.

Chicago

Mori-Seminario, Carlos Enrique, Hector Enrique Gonzales-Mora, Julio André Gamarra-Bustamante, y Aldo Joao Cárdenas-Oscanoa. 2026. «Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards ». Colombia forestal 29 (1):e23488. https://doi.org/10.14483/2256201X.23488.

Harvard

Mori-Seminario, C. E. (2026) «Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards », Colombia forestal, 29(1), p. e23488. doi: 10.14483/2256201X.23488.

IEEE

[1]
C. E. Mori-Seminario, H. E. Gonzales-Mora, J. A. Gamarra-Bustamante, y A. J. Cárdenas-Oscanoa, «Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards », Colomb. for., vol. 29, n.º 1, p. e23488, ene. 2026.

MLA

Mori-Seminario, Carlos Enrique, et al. «Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards ». Colombia forestal, vol. 29, n.º 1, enero de 2026, p. e23488, doi:10.14483/2256201X.23488.

Turabian

Mori-Seminario, Carlos Enrique, Hector Enrique Gonzales-Mora, Julio André Gamarra-Bustamante, y Aldo Joao Cárdenas-Oscanoa. «Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards ». Colombia forestal 29, no. 1 (enero 1, 2026): e23488. Accedido febrero 2, 2026. https://revistas.udistrital.edu.co/index.php/colfor/article/view/23488.

Vancouver

1.
Mori-Seminario CE, Gonzales-Mora HE, Gamarra-Bustamante JA, Cárdenas-Oscanoa AJ. Effects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards . Colomb. for. [Internet]. 1 de enero de 2026 [citado 2 de febrero de 2026];29(1):e23488. Disponible en: https://revistas.udistrital.edu.co/index.php/colfor/article/view/23488

Descargar cita

Visitas

3

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2.4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32% con financiadores
Competing interests 
Conflicto de intereses: No
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 51%
33% aceptado
Days to publication 
269
145

Indexado: {$indexList}

Editor & editorial board
profiles
Loading...