DOI:
https://doi.org/10.14483/2256201X.22550Publicado:
14-11-2024Número:
Vol. 28 Núm. 1 (2025): Enero-junioSección:
Artículos de investigación científica y tecnológicaDescripción de la remoción de material particulado por una barrera arbórea en un entorno urbano
Description of Particulate Matter Removal by a Tree Barrier in an Urban Environment
Palabras clave:
air quality, PM10, PM2.5, urban trees, i-Tree, tree barrier (en).Palabras clave:
calidad del aire, PM10, PM2.5, arbolado urbano, i-Tree, barrera vegetal (es).Descargas
Resumen (es)
El crecimiento y la densificación de las ciudades plantean importantes retos relacionados con la contaminación del aire. En este estudio se analizó la capacidad de una barrera arbórea modelo cercana a dos vías con alto tráfico vehicular para reducir la concentración de material particulado suspendido (PM10 y PM2.5) en un entorno urbano. Se realizó el inventario forestal de la barrera y, mediante el software i-Tree Eco, se estimó su capacidad de remoción de PM, obteniendo una remoción anual de 61.1 kg, de los cuales 15.4 kg corresponden a PM2.5 y 45.7 kg a PM10. En este caso específico, se identificó que las especies exóticas presentan una mayor remoción que las nativas. Estos hallazgos son importantes para determinar los beneficios del arbolado urbano en materia de calidad del aire y para generar lineamientos de diseño de barreras arbóreas que amortigüen la exposición poblacional a PM urbano.
Resumen (en)
The growth and densification of cities poses major challenges associated with air pollution and public health. This study examines the capacity of a model tree barrier located near two roads with heavy traffic to reduce exposure to particulate matter (PM10 and PM2.5). A forest inventory of the barrier was conducted and, using the i-Tree Eco software, its PM removal capacity was estimated, showing an annual removal of 61.1 kg, out of which 15.4 kg correspond to PM2.5 and 45.7 kg to PM10. In this specific case, exotic species exhibited a greater removal than native ones. These findings are significant in determining the benefits of urban trees concerning air quality, as well as in generating guidelines for the design of tree barriers that mitigate the population’s exposure to PM.
Referencias
Arroyave-Maya, M. D. P., Posada-Posada, M. I., Nowak, D. J., & Hoehn, R. E. (2019). Remoción de contaminantes atmosféricos por el bosque urbano en el valle de Aburrá. Colombia Forestal, 22(1), 5-16. https://doi.org/10.14483/2256201X.13695
Brusseau, M. L., Matthias, A. D., Comrie, A. C., & Musil, S. A. (2019). Atmospheric pollution. En M. L. Brusseau, I. L. Pepper & C. P. Gerba (Eds.), Environmental and Pollution Science (pp. 293-309). Academic Press. https://doi.org/10.1016/B978-0-12-814719-1.00017-3
Cardona A. K., & Bermúdez Z. V. (2019). Arbolado urbano como estrategia de gestión de la calidad del aire [Tesis de especialización, Universidad de Antioquia]. https://hdl.handle.net/10495/15906
Chen, L., Liu, C., Zou, R., Yang, M., & Zhang, Z. (2016). Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environmental Pollution, 208, 198-208. https://doi/10.1016/j.envpol.2015.09.006
De la Riva, E. G., Pérez-Ramos, I., Fernández, C. N., Olmo, M., Arana, T. M., & Villar, R. (2014). Rasgos funcionales en el género Quercus: estrategias adquisitivas frente a conservativas en el uso de recursos. Ecosistemas, 23(2), 82-89. https://doi/10.7818/ECOS.2014.23-2.11
Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., & Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, 104(52), 20684-20689. https://doi/10.1073/pnas.0704716104
Escobedo, F. J., Clerici, N., Staudhammer, C. L., & Corzo, G. T. (2015). Socio-ecological dynamics and inequality in Bogotá, Colombia's public urban forests and their ecosystem services. Urban Forestry & Urban Greening, 14(4), 1040-1053. https://doi/10.1016/j.ufug.2015.09.011
Farrow, A., Anhauser, A., Chen, Y., & Céspedes, T. (2022). La carga de la contaminación del aire en Bogotá, Colombia 2021. Greenpeace. https://www.greenpeace.org/static/planet4-colombia-stateless/2022/05/6521e020-la-carga-de-la-contaminacion-del-aire-en-bogota-colombia-2021.pdf
Garnier, E., Navas, M.-L., & Grigulis, K. (2015). Plant functional diversity: Organism traits, community structure, and ecosystem properties (1ra ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198757368.001.0001
Grote, R., Samson, R., Alonso, R., Amorim, J. H., Cariñanos, P., Churkina, G., Fares, S., Thiec, D. L., Niinemets, Ü., Mikkelsen, T. N., Paoletti, E., Tiwary, A., & Calfapietra, C. (2016). Functional traits of urban trees: Air pollution mitigation potential. Frontiers in Ecology and the Environment, 14, 543-550. https://doi/10.1002/fee.1426
Hernández, M., Ramírez, O., Benavides, J., & Franco, J. (2021). Urban cycling and air quality: Characterizing cyclist exposure to particulate-related pollution. Urban Climate, 36, 100767. https://doi/10.1016/j.uclim.2020.100767
International Agency for Research on Cancer (IARC) (2013). Air pollution and cancer. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-And-Cancer-2013
Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) (2018). Informe del estado de la calidad del aire en Colombia. https://www.andi.com.co/Uploads/Informe%20estado%20calidad%20del%20aire%202018.pdf.
Jeanjean, A. P. R., Buccolieri, R., Eddy, J., Monks, P. S., & Leigh, R. J. (2017). Air quality affected by trees in real street canyons: The case of Marylebone neighbourhood in central London. Urban Forestry & Urban Greening, 22, 41-53. https://doi/10.1016/j.ufug.2017.01.009
Lavorel, S. (2013). Plant functional effects on ecosystem services. Journal of Ecology, 101(1), 4-8. https://doi.org/10.1111/1365-2745.12031
Miao, C., Li, P., Yu, S., Chen, W., & He, X. (2022). Does street canyon morphology shape particulate matter reduction capacity by street trees in real urban environments? Urban Forestry & Urban Greening, 78, 127762. https://doi.org/10.1016/j.ufug.2022.127762
Ministerio de Ambiente y Desarrollo Sostenible (MADS) (2017). Resolución 2254 del 2017. https://www.minambiente.gov.co/wp-content/uploads/2021/10/Resolucion-2254-de-2017.pdf
Morakinyo, T. E., Lam, Y. F., & Hao, S. (2016). Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement. Journal of Environmental Management, 182, 595-605. https://doi/10.1016/j.jenvman.2016.07.077
Moreno Barreto, J. E., & Rubiano Calderón, K. D. (2020). Aproximación al uso de rasgos funcionales y gradientes ambientales para seis especies del arbolado urbano de Bogotá. Revista Facultad De Ciencias Básicas, 15(2), 17-33. https://doi/10.18359/rfcb.3901
Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3-4), 115-123. https://doi/10.1016/j.ufug.2006.01.007
Nowak, D. J., Hirabayashi, S., Bodine, A., & Hoehn, R. (2013). Modeled PM2. 5 removal by trees in ten US cities and associated health effects. Environmental Pollution, 178, 395-402. https://doi/10.1016/j.envpol.2013.03.050
Organización Mundial de la Salud (OMS) (2016). Calidad del Aire Ambiente. https://www.paho.org/es/temas/calidad-aire/calidad-aire-ambiente
Organización Mundial de la Salud (OMS) (2018). Nueve de cada diez personas de todo el mundo respiran aire contaminado. https://www.who.int/es/news/item/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action
Pope III, C. A., Turner, M. C., Burnett, R. T., Jerrett, M., Gapstur, S. M., Diver, W. R., & Brook, R. D. (2015). Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circulation Research, 116(1), 108-115. https://doi/10.1161/CIRCRESAHA.116.305060
Rodríguez-Alarcón, S. J., Pinzón-Pérez, L., López-Cruz, J., & Cabrera-Amaya, D. (2020). Rasgos funcionales de plantas leñosas en áreas verdes de Bogotá, Colombia. Biota Colombiana, 21(2), 108-133. https://doi/10.21068/c2020.v21n02a08
Santiago, J.-L., Martilli, A., & Martin, F. (2016). On dry deposition modelling of atmospheric pollutants on vegetation at the microscale: Application to the impact of street vegetation on air quality. Boundary-Layer Meteorology, 162, 451-474. https://doi/10.1007/s10546-016-0210-5
Secretaría Distrital de Ambiente (SDA) (2023). Informe anual de calidad del aire de Bogotá 2023. https://www.rmcab.ambientebogota.gov.co/Pagesfiles/Informe%20anual%202023.pdf
Secretaría Distrital de Ambiente (SDA) (2024). Inventario de emisiones de Bogotá, contaminantes criterio y black carbon año: 2022. https://ww.ambientebogota.gov.co/todas-las-investigaciones/-/asset_publisher/pibvwzUnZiNr/document/id/6881078
Secretaría Distrital de Planeación (SDP) (2021). Documento técnico de soporte. Libro I Componente general. Plan de Ordenamiento Territorial. Bogotá Reverdece 2022-2035. www.sdp.gov.co/sites/default/files/dts_libroi_componente_general.pdf
Selmi, W., Weber, C., Rivière, E., Blond, N., Mehdi, L., Nowak, D. (2016). Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry & Urban Greening, 17, 192-201. https://doi/10.1016/j.ufug.2016.04.010
Silva, L., Schneider, I., Artaxo, P., Núñez-Blanco, Y., Pinto, D., Flores, E., Gómez-Plata, L., Ramírez, O., & Dotto, G. (2022). Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geoscience Frontiers, 13(1), 101115. https://doi/10.1016/j.gsf.2020.11.012
UN Environment Program (UNEP) (2021). Actions on air quality. Latin America and the Caribbean regional report. https://www.unep.org/topics/air/multi-level-air-quality-management/actions-air-quality-report-update
Weerakkody, U., Dover, J. W., Mitchell, P., & Reiling, K. (2018). Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban Forestry & Urban Greening, 30, 98-107. https://doi/10.1016/j.ufug.2018.01.001
World Bank (2021). Data. GDP (current US$) - Latin America & Caribbean. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=ZJ
Xing, Y., Brimblecombe, P., Wang, S., & Zhang, H. (2019a). Tree distribution, morphology and modelled air pollution in urban parks of Hong Kong. Journal of Environmental Management, 248, 109304. https://doi/10.1016/j.jenvman.2019.109304
Xing, Y., & Brimblecombe, P. (2019b). Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmospheric Environment, 201, 73-83. https://doi/10.1016/j.atmosenv.2018.12.027
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Colombia forestal
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Colombia Forestal conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
Se reconozcan los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).