DOI:
https://doi.org/10.14483/2256201X.23488Published:
2026-01-01Issue:
Vol. 29 No. 1 (2026): January-JuneSection:
Scientific articleEffects of Adding Pretreated Chestnut (Bertholletia excelsa) Mesocarp Fibers to Fiber-Cement Boards
Efectos de la adición de fibras pretratadas de mesocarpio de castaño (Bertholletia excelsa) a tableros de fibrocemento
Keywords:
Chestnut (Bertholletia excelsa), fiber–cement board, mesocarp fibers, NaOH pretreatment (en).Keywords:
Castaña (Bertholletia excelsa), tablero de fibrocemento, fibras de mesocarpio, pre-tratamiento de NaOH (es).Downloads
Abstract (en)
Natural fibers have gained relevance due to their renewable nature, which makes them promising candidates as reinforcement materials. Chestnut (Bertholletia excelsa) mesocarp fibers have been found to be suitable for incorporation into fiber-cement boards. In this work, two types of boards were produced, with fiber contents of 3, 6, and 9%: one type used fibers pretreated in a 10% NaOH alkali solution, and the other one was left untreated. Comprehensive chemical and analytical assessments were carried out, accompanied by mechanical performance evaluations. The pretreatment reduced the fiber holocellulose content by 5.32%. Incorporating chestnut fibers decreased the board density by up to 13%, regardless of the treatment. The most favorable outcomes regarding the reduction in thickness (up to 3.4% compared to the control group) were observed in samples containing 3% fiber. Notably, boards with pretreated fibers surpassed the Peruvian national standards by 10%. These results position chestnut mesocarp fibers as a promising reinforcement for fiber-cement boards and warrant further investigation.
Abstract (es)
Las fibras naturales han ganado relevancia por su carácter renovable, lo que las hace candidatas promisorias como materiales de refuerzo. Se ha encontrado que las fibras del mesocarpio de castaña (Bertholletia excelsa) son aptas para el uso en tableros de fibrocemento. En este trabajo se fabricaron dos tipos de tableros, con 3, 6 y 9 % de fibra: uno de estos tipos utilizó fibras pretratadas en una solución alcalina al 10 % de NaOH, y el otro se dejó sin tratar. Se realizaron evaluaciones químicas y analíticas, acompañadas por valoraciones de rendimiento mecánico. El pretratamiento redujo el contenido de holocelulosa de las fibras en un 5.32 %. La incorporación de fibras disminuyó la densidad de los tableros hasta en un 13 %, sin importar el tratamiento. Los mejores resultados en cuanto a la reducción de espesor (hasta 3.4 % con respecto al grupo control) se observó en muestras con 3 % de fibra. Cabe destacar que los tableros con fibras pretratadas superaron los estándares nacionales del Perú en un 10 %. Estos resultados posicionan las fibras de mesocarpio de castaña como refuerzo para tableros de fibrocemento y requieren mayor estudio.
References
American Society for Testing and Materials (ASTM) (2022). Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM.
American Society for Testing and Materials (ASTM) (2016). ASTM C1185-08 Standard Test Methods for Sampling and Testing Non-Asbestos Fiber-Cement Flat Sheet, Roofing and Siding Shingles, and Clapboards. ASTM.
American Society for Testing and Materials (ASTM) (2022). ASTM-C1186-22 Standard Specification for Flat Fiber-Cement Sheets (Nos. C1186-22). ASTM.
Arango-Pérez, S. A., Gonzales-Mora, H. E., Ponce-Álvarez, S. P., Gutarra-Espinoza, A. A., & Cárdenas-Oscanoa, A. J. (2023). Assessment of cellulose nanofibers from bolaina blanca wood obtained at three shaft heights. Maderas-Ciencia y Tecnología, 26, e1824. https://doi.org/10.22320/s0718221x/2024.18
Atúncar Vilela, W. B., Gonzales Mora, H. E., Arango, S., & Cárdenas-Oscanoa, A. J. (2024). Elaboración de papel con fibra virgen y reciclada reforzada con celulosa nanofibrilada de Guadua angustifolia. Colombia Forestal, 27(2), e20917. https://doi.org/10.14483/2256201X.20917
Campello, E. F., Pereira, M. V., Darwish, F. A., & Ghavami, K. (2016). On the fatigue behavior of bamboo pulp reinforced cementitious composites. Procedia Structural Integrity, 2, 2929-2935. https://doi.org/10.1016/j.prostr.2016.06.366
Çavdar, A. D., Yel, H., & Torun, S. B. (2022). Microcrystalline cellulose addition effects on the properties of wood cement boards. Journal of Building Engineering, 48, 103975. https://doi.org/10.1016/j.jobe.2021.103975
Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B., & Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52(3), 1252-1260. https://doi.org/10.1021/ie300607r
Chen, Y., Li, Y., Zhang, C., Qi, H., & Hubbe, M. A. (2022). Holocellulosic fibers and nanofibrils using peracetic acid pulping and sulfamic acid esterification. Carbohydrate Polymers, 295, 119902. https://doi.org/10.1016/j.carbpol.2022.119902
Choi, H., & Choi, Y. C. (2021). Setting characteristics of natural cellulose fiber reinforced cement composite. Construction and Building Materials, 271, 121910. https://doi.org/10.1016/j.conbuildmat.2020.121910
Cipra Rodriguez, J. A., Gonzales Mora, H. E., & Cárdenas Oscanoa, A. J. (2022). Characterization of MDF produced with bolaina (Guazuma crinita Mart.) wood residues from plantation. Madera y Bosques, 28(3), e2832433. https://doi.org/10.21829/myb.2022.2832433
Çitlaci̇fci̇, H., Kiliç Pekgözlü, A., & Gülsoy, S. K. (2022). Characterization of cheestnut shell. Bartın University International Journal of Natural and Applied Sciences, 5(2), 145-150. https://doi.org/10.55930/jonas.1207620
Córdova Contreras, A. R., Cárdenas Oscanoa, A. J., & Gonzáles Mora, H. E. (2020). Physical and mechanical characterization of Guazuma crinita Mart. composites based on virgin polypropylene. Revista Mexicana de Ciencias Forestales, 11(57), 1-28. https://doi.org/10.29298/rmcf.v11i57.621
Correia, V. C., Santos, S. F., Savastano Jr, H., & John, V. M. (2018). Utilization of vegetable fibers for production of reinforced cementitious materials. RILEM Technical Letters, 2, 145-154. https://doi.org/10.21809/rilemtechlett.2017.48
Deutsches Institut für Normung (DIN). (1965a, abril). Testing of wood chipboards; bending test, determination of bending strength (DIN 523621:196504) [Withdrawn standard]. Beuth Verlag, /DIN.
Deutsches Institut für Normung (DIN) (1965b, abril). Testing of wood chipboards; determination of dimensions, raw density and moisture content (DIN 52361:196504) [Withdrawn standard]. Beuth Verlag, DIN.
Deutsches Institut für Normung (DIN) (1965c, abril). Testing of wood chipboards; determination of variation in thickness due to moisture (DIN 52364:196504) [Withdrawn standard]. Beuth Verlag, DIN.
do Amaral, L. M., Rodrigues, C. D. S., & Poggiali, F. S. J. (2022). Hornification on vegetable fibers to improve fiber-cement composites: A critical review. Journal of Building Engineering, 48, 103947. https://doi.org/10.1016/j.jobe.2021.103947
Fernández-Carrasco, L., Claramunt, J., & Ardanuy, M. (2014). Autoclaved cellulose fibre reinforced cement: Effects of silica fume. Construction and Building Materials, 66, 138-145. https://doi.org/10.1016/j.conbuildmat.2014.05.050
Ferraz, P. F. P., Mendes, R. F., Marin, D. B., Paes, J. L., Cecchin, D., & Barbari, M. (2020). Agricultural Residues of Lignocellulosic Materials in Cement Composites. Applied Sciences, 10(22), 8019. https://doi.org/10.3390/app10228019
Fonseca, C. S., Silva, M. F., Mendes, R. F., Hein, P. R. G., Zangiacomo, A. L., Savastano, H., & Tonoli, G. H. D. (2019). Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites. Construction and Building Materials, 211, 517-527. https://doi.org/10.1016/j.conbuildmat.2019.03.236
Gamarra-Romero, L. F., Gonzales Mora, H. E., Cipra-Rodríguez, J. A., & Cárdenas-Oscanoa, A. J. (2024). Effect of adding oil palm (Elaeis guineensis Jacq.) mesocarp fibers to cement composites. Colombia Forestal, 27(2), e21457. https://doi.org/10.14483/2256201X.21457
Hasan, K. M. F., Horváth, P. G., & Alpár, T. (2022). Lignocellulosic fiber cement compatibility: A state of the art review. Journal of Natural Fibers, 19(13), 5409-5434. https://doi.org/10.1080/15440478.2021.1875380
Hincapié Rojas, D. F., Pineda-Gómez, P., & Guapacha-Flores, J. F. (2020). Effect of silica nanoparticles on the mechanical and physical properties of fibercement boards. Journal of Building Engineering, 31, 101332. https://doi.org/10.1016/j.jobe.2020.101332
Kandel, K. P., Adhikari, M., Kharel, M., Aryal, G. M., Pandeya, S., Joshi, M. K., Dahal, B., Gautam, B., & Neupane, B. B. (2022). Comparative study on material properties of wood-ash alkali and commercial alkali treated Sterculia fiber. Cellulose, 29(10), 5913-5922. https://doi.org/10.1007/s10570-022-04610-w
Karaseva, V., Bergeret, A., Lacoste, C., Ferry, L., & Fulcrand, H. (2019). Influence of extraction conditions on chemical composition and thermal properties of chestnut wood extracts as tannin feedstock. ACS Sustainable Chemistry & Engineering, 7(20), 17047-17054. https://doi.org/10.1021/acssuschemeng.9b03000
Kurpińska, M., Pawelska-Mazur, M., Gu, Y., & Kurpiński, F. (2022). The impact of natural fibers’ characteristics on mechanical properties of the cement composites. Scientific Reports, 12(1), 20565. https://doi.org/10.1038/s41598-022-25085-6
Laverde, V., Marin, A., Benjumea, J. M., & Rincón Ortiz, M. (2022). Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review. Construction and Building Materials, 340, 127729. https://doi.org/10.1016/j.conbuildmat.2022.127729
Lilargem Rocha, D., Tambara Júnior, L., Marvila, M., Pereira, E., Souza, D., & de Azevedo, A. (2022). A Review of the use of natural fibers in cement composites: Concepts, applications and Brazilian history. Polymers, 14(10), 2043. https://doi.org/10.3390/polym14102043
Llerena, A. (2014). Estudio de compuestos cementíceos reforzados con fibras vegetales: Evaluación previa del comportamiento de un panel de cemento blanco con adición de metacaolín reforzado con un textil notejido de fibras largas de lino y cáñamo [Master’s thesis, Universitat Politècnica de Catalunya]. http://hdl.handle.net/2099.1/25365
Mármol, G., & Savastano, H. (2017). Study of the degradation of non-conventional MgO-SiO2 cement reinforced with lignocellulosic fibers. Cement and Concrete Composites, 80, 258-267. https://doi.org/10.1016/j.cemconcomp.2017.03.015
Martinelli, F. R. B., Ribeiro, F. R. C., Marvila, M. T., Monteiro, S. N., Filho, F. D. C. G., & Azevedo, A. R. G. D. (2023). A Review of the use of coconut fiber in cement composites. Polymers, 15(5), 1309. https://doi.org/10.3390/polym15051309
Mohr, B. J., Biernacki, J. J., & Kurtis, K. E. (2006). Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites. Cement and Concrete Research, 36(7), 1240-1251. https://doi.org/10.1016/j.cemconres.2006.03.020
Nagaraja Ganesh, B., Rekha, B., Mohanavel, V., & Ganeshan, P. (2023). Exploring the Possibilities of Producing Pulp and Paper from Discarded Lignocellulosic Fibers. Journal of Natural Fibers, 20(1), 2137618. https://doi.org/10.1080/15440478.2022.2137618
Petrechen, G., Arduin, M., & Ambrósio, J. (2019). Morphological Characterization of Brazil Nut Tree (Bertholletia excelsa) Fruit Pericarp. Journal of Renewable Materials, 7(7), 683-692. https://doi.org/10.32604/jrm.2019.04588
Rocco, C. G., & Elices, M. (2009). Effect of aggregate shape on the mechanical properties of a simple concrete. Engineering Fracture Mechanics, 76(2), 286-298. https://doi.org/10.1016/j.engfracmech.2008.10.010
Sales, S. L. T., Aldamia, F. J., Gonzaga, P. S., Montesclaros, A. J. S., & Lawagon, C. P. (2022). Properties of fiber cement boards influenced by BSCH (banana stem and corn husk) fibers and citric acid addition. Key Engineering Materials, 913, 125-130. https://doi.org/10.4028/p-qv513a
Soares, C., Moura, E., Arenhardt, V., Deliza, E. E. V., & Pedro Filho, F. D. S. (2023). Biotechnology management in the Amazon and the production of polypropylene / Brazil nut shell fiber biocomposite. Revista de Gestão e Secretariado, 14(7), 10734-10748. https://doi.org/10.7769/gesec.v14i7.2424
Soltan, D. G., das Neves, P., Olvera, A., Savastano Junior, H., & Li, V. C. (2017). Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior. Industrial Crops and Products, 103, 1-12. https://doi.org/10.1016/j.indcrop.2017.03.016
Sonego, M., Fleck, C., & Pessan, L. A. (2019). Mesocarp of Brazil nut (Bertholletia excelsa) as inspiration for new impact resistant materials. Bioinspiration & Biomimetics, 14(5), 056002. https://doi.org/10.1088/1748-3190/ab2298
Sonego, M., Madia, M., Eder, M., Fleck, C., & Pessan, L. A. (2021). Microstructural features influencing the mechanical performance of the Brazil nut (Bertholletia excelsa) mesocarp. Journal of the Mechanical Behavior of Biomedical Materials, 116, 104306. https://doi.org/10.1016/j.jmbbm.2020.104306
Suwan, T., Maichin, P., Fan, M., Jitsangiam, P., Tangchirapat, W., & Chindaprasirt, P. (2022). Influence of alkalinity on self-treatment process of natural fiber and properties of its geopolymeric composites. Construction and Building Materials, 316, 125817. https://doi.org/10.1016/j.conbuildmat.2021.125817
Technical Association of the Pulp and Paper Industry (TAPPI) (2017). Solvent Extractives of Wood and Pulp, Test Method T 204 cm-17. TAPPI.
Technical Association of the Pulp and Paper Industry (TAPPI) (2022). Water solubility of wood and pulp, Test Method T 207 cm-22. TAPPI.
Technical Association of the Pulp and Paper Industry (TAPPI) (2006). Fiber Length of Pulp by Classification, Test Method T 233 cm-06. TAPPI.
Technical Association of the Pulp and Paper Industry (TAPPI) (2021). Acid-insoluble lignin in wood and pulp, Test Method T 222 om-21. TAPPI.
Technical Association of the Pulp and Paper Industry (TAPPI) (2015). Holocellulose in wood (T 9 wd 75). TAPPI Press. TAPPI.
Teixeira, J. N., Silva, D. W., Vilela, A. P., Savastano Junior, H., de Siqueira Brandão Vaz, L. E. V., & Mendes, R. F. (2020). Lignocellulosic materials for fiber cement production. Waste and Biomass Valorization, 11(5), 2193-2200. https://doi.org/10.1007/s12649-018-0536-y
Tonoli, G. H. D., Rodrigues Filho, U. P., Savastano, H., Bras, J., Belgacem, M. N., & Rocco Lahr, F. A. (2009). Cellulose modified fibres in cement based composites. Composites Part A: Applied Science and Manufacturing, 40(12), 2046-2053. https://doi.org/10.1016/j.compositesa.2009.09.016
Wang, Y., Lindström, M. E., & Henriksson, G. (2014). Increased degradability of cellulose by dissolution in cold alkali. BioResources, 9(4), 7566-7578. https://doi.org/10.15376/biores.9.4.7566-7578
Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research, 73, 1-16. https://doi.org/10.1016/j.cemconres.2015.02.019
Wei, J., & Meyer, C. (2016). Utilization of rice husk ash in green natural fiber-reinforced cement composites: Mitigating degradation of sisal fiber. Cement and Concrete Research, 81, 94-111. https://doi.org/10.1016/j.cemconres.2015.12.001
Yusuf, M. O. (2023). Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Applied Sciences, 13(5), 3353. https://doi.org/10.3390/app13053353
Zavaleta-Cavero, D. A., Chumpitaz-Príncipe, D. A., Gutarra-Espinoza, A. A., Cárdenas-Oscanoa, A. J., Gonzales-Mora, H. E., Quino-Favero, J. M., Gómez-Maldonado, D., Peresin, M. S., & Ponce-Álvarez, S. P. (2024). From Bolaina Blanca wood fibers to antimicrobial films: Characterization and application in the food industry using copper nanoparticles. Journal of Natural Fibers, 21(1), 2431314. https://doi.org/10.1080/15440478.2024.2431314
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Colombia Forestal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Colombia Forestal retains the patrimonial rights (copyright) of the published works, and favors and allows the reuse of the same under the Creative Commons Attribution-ShareAlike 4.0 International license, so they can be copied, used, disseminated, transmitted and exhibited publicly, provided that:
You acknowledge the credits of the work in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they endorse your use of their work).




