Optimized Hierarchical Control for an AC Microgrid Under Attack

Control Jerárquico Optimizado para una Microrred de CA Bajo Ataque

Abstract (en_US)

Context: An inverter-based microgrid working in islanded mode can suffer cyber- attacks, these can be done against either the local controller or the communication links among the inverters. Secondary control is able to reject those attacks, however, a tertiary control action is necessary in order to stabilize the power flow among the microgrid.

Method: Confidence factor technique allows to reject attacks in a microgrid acting directly over the secondary control, however, this technique omits other factor related to the power available. In this case, secondary control was complemented with a tertiary control that includes optimization criteria.

Results: An inverter-based microgrid is simulated in Matlab for different scenarios and under cyberattack, this allows checking the correct response of the controller under attacks and the effective powersharing among inverters.

Conclusions: The tertiary control allows stabilizing the active power of the system after the rejection of a cyber-attack by the secondary control. Each inverter supplies active power according to its máximum power rating without affecting the stability of the whole system.

Abstract (es_ES)

Contexto: Una microrred de CA (corriente alterna) basada en inversores y que funciona en modo isla puede ser víctima de ciberataques, estos pueden ir contra el controlador o contra el sistema de comunicaciones entre los nodos. El control secundario puede rechazar el ataque, sin embargo la acción de un controlador terciario es necesario para estabilizar el flujo de potencia en la microrred.

Método: La técnica basada en factores de confianza permite repeler ataques a la microrred actuando directamente sobre el controlador secundario, sin embargo, esta técnica omite factores de optimización. En este caso, las señales de control generadas a partir de los factores de confianza fueron complementadas en un controlador terciario para incluir criterios de optimización.

Resultados: Se simula una microrred en Matlab para diferentes escenarios y ataques, permitiendo verificar la acertada respuesta del controlador ante ataques cibernéticos.

Conclusiones: El control terciario permite estabilizar la potencia del sistema ante el rechazo de un ciberataque por parte del control secundario. Cada inversor entrega potencia de acuerdo con su rango máximo de potencia sin afectar la estabilidad de todo el sistema.


Download data is not yet available.


R. H. Lasseter, “MicroGrids,” IEEE Power Engineering Society winter Meeting, pp. 305–308, 2002.

J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuna, and M. Castilla, “Hierarchical control of droop-˜

controlled AC and DC microgrids - A general approach toward standardization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158–172, 2011.

M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone ac supply

systems,” IEEE Transactions on Industry Applications, vol. 29, no. 1, pp. 136–143, 1993.

F. L. Lewis, Z. Qu, A. Davoudi, and A. Bidram, “Secondary control of microgrids based on distributed cooperative control of multi-agent systems,” IET Generation, Transmission & Distribution, vol. 7, no. October 2012,

pp. 822–831, 2013.

F. Dorfler, J. W. Simpson-porco, and F. Bullo, “Breaking the Hierarchy : Distributed Control and Economic¨

Optimality in Microgrids,” vol. 3, no. 3, pp. 241–253, 2016.

S. Abhinav, H. Modares, F. L. Lewis, F. Ferrese, and A. Davoudi, “Synchrony in networked microgrids under

attacks,” IEEE Transactions on Smart Grid, pp. 1–1, 2017.

J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids; Part I: Decentralized and Hierarchical Control,” Industrial Electronics, IEEE Transactions on, vol. 60,

no. 4, pp. 1254–1262, 2013.

F. Pasqualetti, S. Member, F. Dor, S. Member, and F. Bullo, “Attack Detection and Identi fi cation in Cyber-¨

Physical Systems,” vol. 58, no. 11, pp. 2715–2729, 2013.

J. M. Guerrero, P. C. Loh, T. L. Lee, and M. Chandorkar, “Advanced control architectures for intelligent microgridsPart II: Power quality, energy storage, and AC/DC microgrids,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1263–1270, 2013.

M. S. Mahmoud, F. M. A.L.-Sunni, and M. Saif Ur Rahman, “Review of microgrid architectures – a system of

systems perspective,” IET Renewable Power Generation, 2015.

A. Nedic and A. Ozdaglar, “Subgradient methods for saddle-point problems,”´ Journal of Optimization Theory

and Applications, vol. 142, no. 1, pp. 205–228, 2009.

F. Guo, C. Wen, J. Mao, and Y. D. Song, “Distributed Economic Dispatch for Smart Grids with Random Wind

Power,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1572–1583, 2016.

F. Guo, C. Wen, J. Mao, J. Chen, and Y.-D. Song, “Hierarchical Decentralized Optimization Architecture for

Economic Dispatch: A New Approach for Large-scale Power System,” IEEE Transactions on Industrial Informatics, 2017.

E. Baron-prada, C. A. Uribe, and E. Mojica-nava, “A Method for Distributed Transactive Control in Power

Systems based on the Projected Consensus Algorithm,” in 7th IFAC Workshop on Distributed Estimation and

Control in Networked Systems (NecSys18), 2018.

C. A. Macana and H. R. Pota, “Optimal Energy Management System for Strategic Prosumer Microgrids: An

average bidding algorithm for prosumers aggregators,” Asian Control Conference - ASCC 2017, 2017.

C. A. Macana, H. R. Pota, S. M. Mohiuddin, and M. A. Mahmud, “Online Energy Management Strategy for

Islanded Microgrids with Feedback Linearizing Inner Controllers,” 2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), pp. 1–6, 2017.


Microgrid Tertiary Control

E. Mojica-Nava, S. Rivera, and N. Quijano, “Distributed dispatch control in microgrids with network losses,”

IEEE Conference on Control Applications (CCA), no. October, pp. 285–290, 2016.

N. Quijano, C. Ocampo-martinez, J. Barreiro-gomez, G. Obando, A. Pantoja, E. Mojica-nava, and P. O. C. C.

Ocampo-martinez, “The Role of Population Games and Evolutionary Dynamics in Distributed Control Systems,”

IEEE Control Systems, 2017.

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control. 1996.

Z. Li, C. Zang, P. Zeng, H. Yu, and S. Li, “Agent-based distributed and economic automatic generation control

for droop-controlled AC microgrids,” IET Generation, Transmission & Distribution, vol. 10, no. 14, pp. 3622–

, 2016.

J. N. Webb, Game theory: decisions, interaction and Evolution. Springer Science & Business Media, 2007.

J. Hofbauer and K. Sigmund, “Evolutionary Games and Population Dynamics,” 1998.

How to Cite
Toro, V., Baron, E. D., & Mojica-Nava, E. (2019). Optimized Hierarchical Control for an AC Microgrid Under Attack. Ingeniería, 24(1), 64-82. https://doi.org/10.14483/23448393.13760
Published: 2019-01-30
Special Number Renewable Energy Sources, Systems and Integration