Una Nueva Forma de Reducir la Intermitencia Eléctrica de Manera Sustentable. Caso de Estudio: Un Sistema Híbrido Tipo Rebombeo Solar en México

A New Way to Reduce Electrical Intermittency in a Sustainable Way. Case Study: a Pumped Storage Reservoir-Solar Hybrid System in Mexico.

Abstract (es_ES)

Contexto: México, antes de 2013, tenía un control unilateral tipo gubernamental del sector eléctrico, situación que fue modificada con la reforma energética donde las políticas de operación cambiaron, creando un nuevo esquema basado en un mercado eléctrico mayorista (MEM) a través de un mercado abierto; al mismo tiempo, las fuentes con mayor presencia a la fecha son las fuentes de generación eléctrica tipo intermitente, tales como las centrales solares fotovoltaicas y las centrales eólicas. La intermitencia que de estas fuentes surja en la red de transmisión eléctrica provocará un problema de seguridad energética denominado la curva de pato.

Método: Este estudio técnico-administrativo realiza un panorama pormenorizado para estructurar un modelo a través de la toma de decisiones con el proceso de análisis jerárquico (AHP, por sus siglas en inglés), ello con el fin de repotenciar el sector eléctrico mexicano mediante la toma de decisiones con los criterios sociales, ambientales, económicos, políticos y técnicos.

Resultados: Se presenta un análisis de sensibilidad resultado del software Lingo y Web-Hipre, el cual sustenta el criterio y sub-criterio que mayor beneficio tendrá al incluir una nueva innovación denominada rebombeo solar, ello para salvaguardar las finanzas públicas y disminuir la intermitencia eléctrica en México.

Conclusiones: Llevar a la toma de decisiones y tecnologías dentro de políticas energéticas sin necesidad de un modelo físico, pero sí con una investigación de operaciones, comprobando la factibilidad de estas.

Abstract (en_US)

Context: Mexico before 2013, had a unilateral government-like control of the electricity sector, a situation that was modified with the energy reform, where the operating policies changed, creating a new scheme based on a Wholesale Electricity Market (MEM) through an open market and where the sources with the greatest presence to date are intermittent power generation sources, such as; photovoltaic solar power plants and wind power plants. The intermittency of these sources arising in the electrical transmission network will cause a problem of energy security called the duck curve.

Method: This technical-administrative study makes a detailed panorama to structure a model through decision making with the Hierarchical Analysis Process (AHP, acronym in English) to repower the Mexican electric sector by making decisions with social criteria, environmental, economic, political and technical.

Results: A sensitivity analysis is presented as a result of the LINGO Software and Web Hipre that supports the criterion and sub-criterion that will benefit the most by including a new innovation called Re-pumping-solar to save-the public finances and decrease the electrical intermittency in Mexico.

Conclusions: Lead to decision making, technologies within energy policies without the need for a physical model, but yes; with an investigation of operations verifying the feasibility of said technologies.

Downloads

Download data is not yet available.

References

Abhat, A. (1983). Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 30(4), 313-332. Elsevier

Afgan, N. H., & Carvalho, M. G. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739-755.

Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable energy, 63, 458-466.

Avila-Prats, D., Alesanco-García, R., & Veliz-Alonso, J. (2011). Sistemas híbridos con base en las energías renovables para el suministro de energía a plantas desaladoras. Ingeniería Mecánica, 14(1), 22-30.

Alsema, E. A., & Nieuwlaar, E. (2000). Energy viability of photovoltaic systems. Energy policy, 28(14), 999-1010. ELSEVIER

American Society of Civil Engineers, Civil Engineering Guidelines of Planning and Designing Hydroelectric Develompments, Pumped Storage Reservoir; 1989.

Anagnostopoulos, J. S., & Papantonis, D. E. (2008). Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy. Renewable Energy, 33(7), 1685-1694.

Anagnostopoulos, J. S., & Papantonis, D. E. (2012). Study of pumped storage schemes to support high RES penetration in the electric power system of Greece. Energy, 45(1), 416-423.

Aoki, K., Itoh, M., Satoh, T., Nara, K., & Kanezashi, M. (1989). Optimal long-term unit commitment in large scale systems including fuel constrained thermal and pumped-storage hydro. IEEE Transactions on Power Systems, 4(3), 1065-1073.

APS Panel on Public Affairs Committee on Energy Environment. Challenges of electricity storage technologies. College Park, MD: American Physical Society; 2007.

Aráujo, G. L., & Martí, A. (1994). Absolute limiting efficiencies for photovoltaic energy conversion. Solar Energy Materials and Solar Cells, 33(2), 213-240. ELSEVIER

Ardizzon, G., Cavazzini, G., & Pavesi, G. (2014). A new generation of small hydro and pumped-hydro power plants: Advances and future challenges. Renewable and Sustainable Energy Reviews, 31, 746-761.

Army Corps. Engineering and design—hydropower, (2015) No. 1110-2-1701. Washington, DC: Army Corps of Engineers, Department of the Army; 1985.

Avril, S., Mansilla, C., Busson, M., & Lemaire, T. (2012). Photovoltaic energy policy: financial estimation and performance comparison of the public support in five representative countries. Energy Policy, 51, 244-258. Elsevier

Amer, M., & Daim, T. U. (2011). Selection of renewable energy technologies for a developing county: a case of Pakistan. Energy for Sustainable Development, 15(4), 420-435.

Aznar, J., y Estruch, V. (2015). Valoración de Activos Hidráulicos Ambientales: Editorial Universitat Politécnica de Valencia.

Badri, M. (2001). A combined AHP–GP model for quality control systems. International Journal of Production Economics, 72(1), 27-40. doi: http://dx.doi.org/10.1016/S0925-5273(00)00077-3

Balfour, John R., Shaw, M. y Jarosek, S. (2011). Introduction to Photovoltaics (en inglés). Ed. Jones & Bartlett. p. 218. ISBN 978-1-449-6.

Barnes, F. S., & Levine, J. G. (Eds.). (2011). Large energy storage systems handbook. CRC press.

Baxter R. (2006) Energy storage: a nontechnical guide. Tulsa, OK: PennWell; 2006.

Bezerra, A. M. (1979). Aplicações térmicas da energia solar. Editora Universitária-UFPb, João. ELSEVIER

Biswas, S., Vacik, H., Swanson, M. y Haque, S. (2012). Evaluating Integrated Watershed Management using multiple criteria analysis—a case study at Chittagong Hill Tracts in Bangladesh. Environmental Monitoring and Assessment, 184 (5), 2741-2761. doi: 10.1007/s1068-x

Blechinger, P. F. H., & Shah, K. U. (2011). A multi-criteria evaluation of policy instruments for climate change mitigation in the power generation sector of Trinidad and Tobago. Energy Policy, 39(10), 6331-6343.

Boxwell, M. (2013). Solar Electricity Handbook: A Simple Practical Guide to Solar Energy (en inglés). Greenstream Publishing. p. 200. ISBN 978-1-907670-28-2.

Braga, R. P. (2008). Energia solar fotovoltaica: fundamentos e aplicações. Monografia (Graduação).

Bueno, C., & Carta, J. A. (2006). Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renewable and Sustainable Energy Reviews, 10(4), 312-340.

Calizaya, A., Meixner, O., Bengtsson, L., & Berndtsson, R. (2010). Multi-criteria Decision Analysis (MCDA) for Integrated Water Resources Management (IWRM) in the Lake Poopo Basin, Bolivia. Water Resources Management, 24(10), 2267-2289. doi: 10.1007/s11269-009-9551-x

Carlos A. Bremaunts Monge (2012), Almacenamiento de Energía por Plantas de Rebombeo. Coordinación de Proyectos Hidroeléctricos de la CFE, Estudio para determinar la mejor alternativa de instalar una planta de rebombeo en el Sistema Hidroeléctrico de Necaxa, 2012.

Casaña, A. (2013). La decisión multicriterio: aplicación en la selección de ofertas competitivas en edificación. (Tesis de máster), Universidad Politécnica de Valencia, España.

Castañer, L. y Markvart, T. (2003). Practical handbook of photovoltaic: fundamentals and applications (en inglés). Ed. Elsevier. ISBN 1-85617-390-9.

Cavallaro, F. (2009). Multi-criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy, 34 (7), 1678-1685.

CFE. (2011). Programa de Obras e Inversiones del Sector Eléctrico 2011- 2025. México: Comisión Federal de Electricidad.

CFE. (2014). Programa de Obras e Inversiones del Sector Eléctrico: POISE 2014-2028: Comisión Federal de Electricidad. S. Programación.

Charabi, Y., & Gastli, A. (2011). PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. Renewable Energy, 36(9), 2554-2561.

Charnes, A., Cooper, W. y Ferguson, R. (1955). Optimal Estimation of Executive Compensation by Linear Programming. Management Science, 1(2), 138-151. doi: 10.1287/mnsc.1.2.138

Chatzimouratidis, A. I., & Pilavachi, P. A. (2008). Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy, 36(3), 1074-108

Chow, S. K., Lee, E. W., & Li, D. H. (2012). Short-term prediction of photovoltaic energy generation by intelligent approach. Energy and Buildings, 55, 660-667. Elsevier

Connolly, D., Lund, H., Finn, P., Mathiesen, B. V., & Leahy, M. (2011). Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy, 39 (7), 4189-4196.

Connolly, D., Lund, (2012). Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitraje: New Model Energy Policy, 4189-4196.

C. Pérez-Díaz, J. I., Millan, R., Garcia, D., Guisandez, I., & Wilhelmi, J. R. (2012). Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation. Energy, 48(1), 144-152.CPH-CFE. (2012).

LM 5000 Manual del Sistema de Gestión Integrado (Revisión 8 ed.). México: Coordinación de Proyectos Hidroeléctricos. Comisión Federal de Electricidad 2017.

Cruz Carmona, J. (2014). Actualidad de materiales para la captación de energía solar térmica y fotovoltaica

Deane JP, Gallachóir BP, McKeogh EJ. (2015) Techno-economic review of existing and new pumped hydro energy storage plant. Renew Sust Energ Rev 2010; 14:1293–302.

Delgado, X., Pérez, R., Izquierdo, J. y Mora, J. (2010). An analytic hierarchy process for assessing externalities in water leakage management. Mathematical and Computer Modelling, 52 (7–8), 1194-1202. doi: http://dx.doi.org/10.1016/j.mcm.2010.03.014

Dincer, F. (2011). The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable and Sustainable Energy Reviews, 15(1), 713-720. ELSEVIER

Ding, H., Hu, Z., & Song, Y. (2012). Stochastic optimization of the daily operation of wind farm and pumped-hydro-storage plant. Renewable Energy, 48, 571-578.

Dubey, S., & Tiwari, G. N. (2008). Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater. Solar Energy, 82(7), 602-612. Elsevier

Duque, Á. J., Castronuovo, E. D., Sánchez, I., & Usaola, J. (2011). Optimal operation of a pumped-storage hydro plant that compensates the imbalances of a wind power producer. Electric power systems research, 81(9), 1767-1777.

E. A. Gilmore, P. J. Adams, and L. B. Lave (2013) “Using Backup Generators for Meeting Peak Electricity Demand: A Sensitivity Analysis on Emission Controls, Location, and Health Endpoints," J. Air Waste Manag. Assoc. 60, 523 (2013)

Ecoprog Gmb H. (2013). The World Market for Pumped-Storage Power Plants. Köln, Germany.

IEA. (International Energy Agency) Electricity: Outlook (2016) Form EIA-860 detailed data 2016. Washington, DC: US Department of Energy, Energy Information Administration; 2016.

Energy Storage Technology Roadmap: Technology Annex, (2016) International Energy Agency, March 2016.

Escobar, J. W. (2015). Metodología para la toma de decisiones de inversión en portafolio de acciones utilizando la técnica multicriterio AHP. Contaduría y administración, 60(2), 346-366.

Fahrenbruch, A., & Bube, R. (2011). Fundamentals of solar cells: photovoltaic solar energy conversion. Elsevier.

Fahrenbruch, A. (2012). Review of the fundamentals of solar cells: photovoltaic solar energy conversión-intermittence. Elsevier.

F. Cooper, W. W. (2002). Abraham Charnes and WW Cooper (et al.): a brief history of a long collaboration in developing industrial uses of linear programming. Operations Research, 50(1), 35-41.

Fernández Salgado, José M. (2008). Guía completa de la energía solar fotovoltaica. A. Madrid Vicente. p. 296. ISBN 978-84-96709-12-6.

Finger, S. (1979). Electric power system production costing and reliability analysis including hydroelectric, storage, and time dependent power plants. MIT Energy Laboratory.

Foley, A. M., Leahy, P. G., Li, K., McKeogh, E. J., & Morrison, A. P. (2015). A long-term analysis of pumped hydro storage to firm wind power. Applied Energy, 137, 638-648.

Gallego, J. y Juízo, D. (2011). Strategic implementation of integrated water resources management in Mozambique: An A’WOT analysis. Physics and Chemistry of the Earth, Parts A/B/C, 36(14–15), 1103-1111. doi: http://dx.doi.org/10.1016/j.pce.2011.07.040

Gass, S. y Rapcsák, T. (1998). A note on synthesizing group decisions. Decision Support Systems, 22(1), 59-63. doi: http://dx.doi.org/10.1016/S0167-9236(96)00061-9

Grajales Perea, J. S. (2016) Esquemas de inversión para la micro generación fotovoltaica de energía eléctrica en el sector residencial colombiano (Doctoral dissertation, Universidad Nacional de Colombia-Sede Medellín). ELSEVIER

Grisales, E. y Murillo, J. (2014). El mercado de bonos de carbono y su aplicación para proyectos hidroeléctricos. Revista CINTEX, 18.

Hasnain, S. M. (1998). Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy conversion and management, 39(11), 1127-1138. Elsevier

Hui, W. T. (2018). U.S. Patent Application floating solar panel. U.S. Patent Application No 29/573,236.

Hegedus, S. y Luque, A. (2011). Handbook of Photovoltaic Science and Engineering (en inglés) (2ª edición). John Wiley and Sons. p. 1132. ISBN 978-0-470-72169-8.

Henry JM, Maurer F, Drommi J-L, Sautereau T. (2013) Converting to variable speed at a pumped storage plant. Hydro Rev World 2013.

Hernandez, l. S. G. (2016). energía eólica y desarrollo sostenible en la región de la rumorosa, municipio de Tecate Un análisis multicriterio

Huang, B. J., Lin, T. H., Hung, W. C., & Sun, F. S. (2001). Performance evaluation of solar photovoltaic/thermal systems. Solar energy, 70(5), 443-448. Elsevier

Chow, T. T. (chow). A review on photovoltaic/thermal hybrid solar technology. Applied energy, 87(2), 365-379.

IHA. (2016). Protocolo de Evaluación de la Sostenibilidad de la Hidroelectricidad. London: Asociación Internacional de la Energía Hidroeléctrica. USA 2016.

Izquierdo, S., Rodrigues, M., & Fueyo, N. (2008). A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy, 82(10), 929-939. ELSEVIER

JKrajačić, G., Lončar, D., Duić, N., Zeljko, M., Arántegui, R. L., Loisel, R., & Raguzin, I. (2013). Analysis of financial mechanisms in support to new pumped hydropower storage projects in Croatia. Applied energy, 101, 161-171.

Jaber, J., y Mohsen, M. (2001). Evaluation of non-conventional water resources supply in Jordan. Desalination, 136(1), 83-92. doi: http://dx.doi.org/10.1016/S0011-9164(01)00168-0

Jiang, R., Wang, J., & Guan, Y. (2012). Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems, 27(2), 800-810.

Jog, M. G. (1988). Hydroelectric and pumped storage plants.(BOOK)

Joshi, A. S., Tiwari, A., Tiwari, G. N., Dincer, I., & Reddy, B. V. (2009). Performance evaluation of a hybrid photovoltaic thermal (PV/T)(glass-to-glass) system. International Journal of Thermal Sciences, 48(1), 154-164. Elsevier

Kalogirou, S. A. (2001). Use of TRNSYS for modelling and simulation of a hybrid pv–thermal solar system for Cyprus. Renewable energy, 23(2), 247-260. Elsevier

Kapsali, M., Anagnostopoulos, J. S., & Kaldellis, J. K. (2012). Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives. Applied energy, 99, 430-444.

Karger, C. R., & Hennings, W. (2009). Sustainability evaluation of decentralized electricity generation. Renewable and Sustainable Energy Reviews, 13(3), 583-593.

Katsaprakakis DA, Christakis DG, Stefanakis I, Spanos P, Stefanakis N. (2015) Technical details regarding the design, the construction and the operation of seawater pumped storage systems. Energy 2015; 55:619–30.

Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.

Kazempour, S. J., Hosseinpour, M., & Moghaddam, M. P. (2009, July). Self-scheduling of a joint hydro and pumped-storage plants in energy, spinning reserve and regulation markets. In Power & Energy Society General Meeting, 2009. PES'09. IEEE (pp. 1-8). IEEE.

Kelly, N. A., & Gibson, T. L. (2009). Improved photovoltaic energy output for cloudy conditions with a solar tracking system. Solar Energy, 83(11), 2092-2102. ELSEVIER

Kennedy, Danny (2012). Rooftop Revolution: How Solar Power Can Save Our Economy-and Our Planet-from Dirty Energy (en inglés). Berrett-Koehler Publishers. p. 192. ISBN 978-1609946647.

Khatibi, M., & Jazaeri, M. (2008, October). An analysis for increasing the penetration of renewable energies by optimal sizing of pumped-storage power plants. In Electric Power Conference, 2008. EPEC 2008. IEEE Canada (pp. 1-5). IEEE.

Khodashenas, S. y Yarahmadi, N. (2016). Storage dam’s locality placing by MCDM techniques (case study: three dams in Iran). Arabian Journal of Geosciences, 9(13), 612. doi: 10.1007/s12517-016-2636-y

Khodayar, M. E., Shahidehpour, M., & Wu, L. (2013). Enhancing the dispatchability of variable wind generation by coordination with pumped-storage hydro units in stochastic power systems. IEEE Transactions on Power Systems, 28(3), 2808-2818.

Kern Jr, E. C., & Russell, M. C. (1978). Combined photovoltaic and thermal hybrid collector systems (No. COO-4577-3; CONF-780619-24). Massachusetts Inst. of Tech., Lexington (USA). Lincoln Lab..

Kim, Y. M., Shin, D. G., & Favrat, D. (2011). Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis. Energy, 36(10), 6220-6233.

Komp, Richard J. (2002). Practical Photovoltaics: Electricity from Solar Cells (en inglés). Ed. Aatec. p. 218. ISBN 978-0-937948-11-8.

Koutnik, J., Nicolet, C., Schohl, G. A., & Avellan, F. (2006). Overload surge event in a pumped-storage power plant. In Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems (No. LMH-CONF-2007-007).

Kumar, A., Schei, T., Ahenkorah, A., Rodriguez, R. C., Devernay, J., Freitas, M., Liu, Z. (2011). Hydropower. IPCC special report on renewable energy sources and climate change mitigation, 437-496.

Kumar, R., & Rosen, M. A. (2011). A critical review of photovoltaic–thermal solar collectors for air heating. Applied Energy, 88(11), 3603-3614. Elsevier

Lefebvre N, Tabarin M, Teller O. (2016) A solution to intermittent renewable using pumped hydropower. Renew Energ World 2015; 49.

L. Kyriakopoulos, G. L., & Arabatzis, G. (2016). Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews, 56, 1044-1067.

L.ElNozahy, M. S., & Salama, M. M. A. (2013). Technical impacts of grid-connected photovoltaic systems on electrical networks—A review. Journal of Renewable and Sustainable Energy, 5(3), 032702.

Locher, H., y Scanlon, A. (2012). Sustainable Hydropower-Issues and Approaches. Samadi, H. (Ed), Hydropower – Practice and Aplication:

Lorenzo, E., Araujo, G. L., & Cuevas, A. (1994). Electricidad solar: ingeniería de los sistemas fotovoltaicos. Progensa.

Lorenzo, Eduardo (2006). Radiación solar y dispositivos fotovoltaicos. Progensa. ISBN 84-95693-31-3.

Lu, N., Chow, J. H., & Desrochers, A. A. (2003, July). Pumped-storage hydro-turbine bidding strategies in a competitive electricity market. In Power Engineering Society General Meeting, 2003, IEEE (Vol. 2, pp. 831-837). IEEE.

Luque, L., Toranzos, V., & Vera, L. Uso eficiente de la energía en sistemas fotovoltaicos autónomos: desarrollo de un convertidor cc-cc con seguimiento de punto de máxima potencia.

Lynn, Paul A. (2010). Electricity from Sunlight: An Introduction to Photovoltaics (en inglés). John Wiley and Sons Ltd. p. 238..

M. en I. Carlos A. Bremaunts Monge (2012), Almacenamiento de Energía por Plantas de Rebombeo. Coordinación de Proyectos Hidroeléctricos de la CFE, Estudio para determinar la mejor alternativa de instalar una planta de rebombeo en la zona comprendida en el Sistema Hidroeléctrico de Necaxa, 2012.

Ma, T., Yang, H., Lu, L., & Peng, J. (2015). Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization. Applied energy, 137, 649-659.

Martín, J. y Vecino, J. (2007). Metódo multicriterio para apoyo a la planificación hídrica/Multricriteria method for water resources plannig/Méthode multicritère dans la gestion hydrique. Observatorio Medioambiental, 10, 57-77.

Maxim, A. (2014). Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis.

McLean E, Kearney D. (2012) An evaluation of seawater pumped hydro storage for regulating the export of renewable energy to the national grid. Energ Procedia 2012; 46:152–60.

Mekhilef, S., Saidur, R., & Safari, A. (2011). A review on solar energy use in industries. Renewable and Sustainable Energy Reviews, 15(4), 1777-1790. Elsevier

Mendoza, A., Santiago, E., y Ravindran, A. (2008). A Three-Phase Multicriteria Method to the Supplier Selection Problem. International Journal of Industrial Engineering: Theory, Applications and Practice, 15(2), 195-210.

Mirasgedis, S., & Diakoulaki, D. (1997). Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems. European Journal of Operational Research, 102(2), 364-379.

Morgado Martín, J. F. (2012). Estudio comparativo de la captación de una instalación solar fotovoltaica (Bachelor's thesis). ELSEVIER

Muselli, M. N. G. L. A., Notton, G., & Louche, A. (1999). Design of hybrid-photovoltaic power generator, with optimization of energy management. Solar energy, 65(3), 143-157. Elsevier

Nagura O, Higuchi M, Tani K, Oyake T. (2012) Hitachi’s adjustable-speed pumped-storage system contributing to prevention of global warming. Hitachi Rev 2010; 59:99–105.

Nussbaumer, P. (2009). On the contribution of labelled Certified Emission Reductions to sustainable development: A multi-criteria evaluation of CDM projects. Energy policy, 37(1), 91-101.

Papaefthimiou, S., Karamanou, E., Papathanassiou, S., & Papadopoulos, M. (2009). Operating policies for wind-pumped storage hybrid power stations in island grids. IET Renewable Power Generation, 3(3), 293-307.

Parida, B., Iniyan, S., & Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), 1625-1636. Elsevier

Peng W, Chen D. (2010) Some considerations on the development of pumped hydroelectric storage power station in China (In Chinese). Beijing, People’s Republic of China: State Electricity Regulatory Commission; 2010.

Perçin, S. (2006). An application of the integrated AHP‐PGP model in supplier selection. Measuring Business Excellence, 10(4), 34-49. doi: 10.1108/13683040610719263

Perlin, John (1999). From Space to Earth: The Story of Solar Electricity (en inglés). Harvard University Press. p. 224.

Pickard WF. (2015) The history, present state, and future prospects of underground pumped hydro for massive energy storage. Proceedings of the IEEE 2012; 100:473–83.

Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—a review. Renewable and sustainable energy reviews, 8(4), 365-381.

Prat Viñas, L. (2011). Dimensionado de sistemas fotovoltaicos. Conemeira. ELSEVIER

Programa de Desarrollo del Sector Eléctrico Nacional (PRODESEN, 2016) Estadísticas de la Secretaría de Energía (Informe-SENER) para el año 2016, costos y nivelación de costos de la energía. Vol 1, Gobierno de la República Mexicana.

Project Completion Report On The Guangzhou Pumped Storage Stage II Project In The People's Republic of China," Asian Development Bank, PCR:PRC 26369, November 2001.

Ramírez, C. A. Y. (2015). Metodología integrada multicriterio para la jerarquización de tecnologías de energía renovable a utilizar para la producción de energía eléctrica. Revista Tecnológica-ESPOL, 28(2).

Ramírez Otero (2014) Instalación de plantas de almacenamiento de energía por bombeo y su contribución para mejorar la eficiencia de las centrales termoeléctricas. Academia de ingeniería. Libro de memorias de congresos académicos CONACyT. p. 198. ISBN 0-13-822213.

Reuter, W. H., Fuss, S., Szolgayová, J., & Obersteiner, M. (2012). Investment in wind power and pumped storage in a real options model. Renewable and Sustainable Energy Reviews, 16(4), 2242-2248.

Reyna, D. y Cardells, I. (1999). Valoración AHP de los ecosistemas naturales de la Comunidad Valenciana. Revista Valenciana D'Estudis Autonomics. (27), 153-179.

Rodríguez Gámez, M., Vázquez Pérez, A., Castro Fernández, M., & Vilaragut Llanes, M. (2013). Sistemas fotovoltaicos y la ordenación territorial. Ingeniería Energética, 34(3), 247-259.

Saaty, T. (1980). The Analytic Hierarchy Process:, New York, NY, McGraw Hill, reprinted by RWS Publication, Pittsburgh.

Saaty, T. (1997). Toma de decisiones para líderes: el proceso analítico jerárquico en la toma de decisiones en un mundo complejo. Pittsburgh: United States of America, RWS Publications.

Sakayori, A., Kuwabara, T., Brando, A., Oono, Y., Hayashi, S., Yokoyama, I., & Ogiwara, K. (1989). U.S. Patent No. 4,816,696. Washington, DC: U.S. Patent and Trademark Office.

Sargaonkar, A., Rathi, B. y Baile, A. (2011). Identifying potential sites for artificial groundwater recharge in sub-watershed of River Kanhan, India. Environmental Earth Sciences, 62(5), 1099-1108. doi: 10.1007/s12665-010-0598-z

Seeling-Hochmuth, G. C. (1997). A combined optimisation concet for the design and operation strategy of hybrid-PV energy systems. Solar energy, 61(2), 77-87.

Schniederjans, M. Hoffman, J. y Sirmans, G. (1995). Using Goal Programming and the analytic hierarchy process in house selection. The Journal of Real Estate Finance and Economics, 11(2), 167-176. doi: 10.1007/bf01098660

Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable energy reviews, 13(2), 318-345. Elsevier

Silvestre, S., Castañer, L., & Guasch, D. (2008). Herramientas de Simulación para Sistemas Fotovoltaicos en ingeniería. Formación universitaria, 1(1), 13-18. ELSEVIER

S. Yang, C. J., & Jackson, R. B. (2011). Opportunities and barriers to pumped-hydro energy storage in the United States. Renewable and Sustainable Energy Reviews, 15(1), 839-844.Solanki, C. S. (2009). Solar Photovoltaics: Fundamentals Technologies And Applications (en inglés). Ed. Phi Learning Pvt. Ltd. p. 478. ISBN 978-81-203-4386-3.

Jaramillo, O. A., Borja, M. A., & Huacuz, J. M. (2004). Using hydropower to complement wind energy: a hybrid system to provide firm power. Renewable energy, 29(11), 1887-1909.

Supriyasilp, T., Pongput, K., y Boonyasirikul, T. (2009). Hydropower development priority using MCDM method. Energy Policy, 37(5), 1866-1875. doi: http://dx.doi.org/10.1016/j.enpol.2009.01.023

Tam SW, Blomquist CA, Kartsounes GT. (2013) Underground pumped hydro storage—an overview. Energ Sources 1979; 4:329–51.

Thompson, D. (2006). Floating support structure for a solar panel array. U.S. Patent Application No 11/264,285

Tian, Y., & Zhao, C. Y. (2013). A review of solar collectors and thermal energy storage in solar thermal applications. Applied energy, 104, 538-553. Elsevier

Timilsina, G. R., Kurdgelashvili, L., & Narbel, P. A. (2012). Solar energy: Markets, economics and policies. Renewable and Sustainable Energy Reviews, 16(1), 449-465. Elsevier

Tripanagnostopoulos, Y., Nousia, T. H., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar energy, 72 (3), 217-234. Elsevier

Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289-296. Elsevier

Tuohy, A., & O'Malley, M. (2009, July). Impact of pumped storage on power systems with increasing wind penetration. In Power & Energy Society General Meeting, 2009. PES'09. IEEE (pp. 1-8). IEEE.

T. Gimeno-Gutiérrez, M., & Lacal-Arántegui, R. (2015). Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs. Renewable Energy, 75, 856-868.

Van der Zwaan, B., & Rabl, A. (2004). The learning potential of photovoltaics: implications for energy policy. Energy Policy, Elsevier

Vorobiev, Y., González-Hernández, J., Vorobiev, P., & Bulat, L. (2006). Thermal-photovoltaic solar hybrid system for efficient solar energy conversion. Solar energy, 80(2), 170-176. Elsevier

W. Mahmoudimehr, J., & Shabani, M. (2018). Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran. Renewable Energy, 115, 238-251.

W. Rehman, S., Al-Hadhrami, L. M., & Alam, M. M. (2015). Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586-598.

Wenham, Stuart R. (2007). Applied Photovoltaics (en inglés). Ed. Earthscan. p. 323. ISBN 978-1-84407-401-3.

Yang, C. J. (2014). Pumped hydroelectric storage. [BOOK].

Yanhui, L., Liang, T., Jing, W., & Xianqiua, L. (2012). Study on Water Resource Vulnerability Evaluation of Hani Terrace Core Area in Yuanyang, Yunnan. Procedia Earth and Planetary Science, 5, 268-274. doi: http://dx.doi.org/10.1016/j.proeps.2012.01.046

Yurdakul, M. (2004). Selection of computer-integrated manufacturing technologies using a combined analytic hierarchy process and goal programming model. Robotics and Computer-Integrated Manufacturing, 20(4), 329-340. doi: http://dx.doi.org/10.1016/j.rcim.2004.11.002

Zahedi, A. (2006). Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems. Renewable Energy, 31(5), 711-718. ELSEVIER

Zhang, H. (2009). The Analysis of the Reasonable Structure of Water Conservancy Investment of Capital Construction in China by AHP Method. Water Resources Management, 23(1), 1-18. doi: 10.1007/s11269-008-9261-9

Zhou, X., Yang, J., Wang, F., & Xiao, B. (2009). Economic analysis of power generation from floating solar power plant. Renewable and Sustainable Energy Reviews, 13(4), 736-749.

Zuber M. (2011) Renaissance for pumped storage in Europe. Hydro Rev World; 19. Elsevier

How to Cite
Ramos, L. de J., & Fragoso, M. M. (2019). A New Way to Reduce Electrical Intermittency in a Sustainable Way. Case Study: a Pumped Storage Reservoir-Solar Hybrid System in Mexico . Ingeniería, 24(3). https://doi.org/10.14483/23448393.14256
Published: 2019-09-15
Section
Electrical and Electronic Engineering