DOI:

https://doi.org/10.14483/23448393.23141

Published:

2025-11-13

Issue:

Vol. 30 No. 3 (2025): September-December

Section:

Environmental Engineering

Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L.

Uso de herramientas computacionales en el modelado de columnas para la adsorción de Cr(VI) en aguas residuales utilizando Theobroma cacao L.

Authors

Keywords:

Waste biomass, Adsorption column, Chromium (VI), Simulation, Water treatment, Wastewater treatment (en).

Keywords:

Biomasa residual, Columna de adsorción, Cromo (VI), Simulación, Tratamiento de Aguas (es).

Downloads

Abstract (en)

Context: Industrial growth and various anthropogenic activities have generated multiple pollutants, including heavy metals such as hexavalent chromium, or Cr(VI), which pose a major threat to both humans and the environment, as their characteristics make them persistent, bioaccumulative, and non-biodegradable.

Method: In this paper, computer-aided process engineering (CAPE) was used to simulate an industrial-scale adsorption column packed with a biomass based on cocoa husk residues for the removal of Cr(VI) in solution. A parametric sensitivity analysis was conducted, using Aspen Adsorption as a simulation tool to analyze different column configurations.

Results: The Freundlich isothermal model, in combination with the linear driving force (LDF) kinetic model, yielded efficient results in removing Cr(VI) via adsorption, with values of up to 97.1%. The best operating conditions included an initial concentration of 5000 mg/L, a bed height of 5 m, and an inlet flow rate of 100 m3/day.

Conclusions: This study demonstrates that the use of computational assistance holds great potential for predicting the performance of an adsorption column packed with agro-industrial waste, which constitutes a safe and cost-effective alternative for the design and modeling of industrial-scale columns.

Abstract (es)

Contexto: El crecimiento industrial y diversas actividades antropogénicas han generado múltiples contaminantes, entre los que se encuentran metales pesados como el cromo hexavalente, o Cr(VI), los cuales representan una amenaza significativa tanto para el medio ambiente como para el ser humano, pues sus características los hacen persistentes, bioacumulativos y no biodegradables.

Método: En este artículo se empleó la ingeniería de procesos asistida por ordenador (CAPE) para simular una columna de adsorción a escala industrial llena de biomasa a base de residuos de cáscara de cacao para la eliminación de Cr(VI) en solución. Se realizó un análisis de sensibilidad paramétrica, utilizando Aspen Adsorption como herramienta de simulación para analizar diferentes configuraciones de la columna.

Resultados: El modelo isotérmico de Freundlich, junto con el modelo cinético de fuerza motriz lineal (LDF) arrojó resultados eficientes en la remoción de Cr(VI) mediante adsorción, con valores de hasta 97.1 %. Las mejores condiciones de operación incluyeron una concentración inicial de 5000 mg/l, una altura del lecho de 5 m y un caudal de entrada de 100 m3/día.

Conclusiones: Este estudio demuestra que el uso de la asistencia computacional tiene gran potencial para predecir el rendimiento de una columna de adsorción llena de residuos agroindustriales, constituyéndose en una alternativa segura y rentable para el diseño y modelado de columnas a escala industrial.

Author Biography

Candelaria Nahir Tejada Tovar, Universidad de Cartagena

Ingeniera Química, Magister en Educación y Magister e Ingenieria ambiental; docente investigadora Grupo IDAB; linea de investigación en tratamiento de aguas y aprovechamiento de biomasas.

References

S. Bochynska et al., “The impact of water pollution on the health of older people,” Maturitas, vol. 185, art. 107981, Jul. 2024. https://doi.org/10.1016/J.MATURITAS.2024.107981

Rozirwan et al., “Ecological risk assessment of heavy metal contamination in water, sediment, and polychaeta (Neoleanira tetragona) from coastal areas affected by aquaculture, urban rivers, and ports in south Sumatra,” J. Ecol. Eng., vol. 25, no. 1, pp. 303–319, 2024. https://doi.org/10.12911/22998993/175365

A. R. Amal Raj, P. Mylsamy, V. Sivasankar, B. S. Kumar, K. Omine, and T. G. Sunitha, “Heavy metal pollution of river water and eco-friendly remediation using potent microalgal species,” Water Sci. Eng., vol. 17, no. 1, pp. 41–50, Mar. 2024. https://doi.org/10.1016/J.WSE.2023.04.001

S. Naik and S. E. Jujjavarapu, “Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water,” J Environ. Chem. Eng., vol. 9, no. 4, art. 105318, Aug. 2021. https://doi.org/10.1016/J.JECE.2021.105318

G. Crini and E. Lichtfouse, “Advantages and disadvantages of techniques used for wastewater treatment,” Environ. Chem. Lett., vol. 17, no. 1, pp. 145–155, Mar. 2019. https://doi.org/10.1007/S10311-018-0785-9/METRICS

Z. Wang et al., “Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil,” J. Clean. Prod., vol. 379, art. 134043, Dec. 2022. https://doi.org/10.1016/J.JCLEPRO.2022.134043

N. Zulfiqar, M. Shariatipour, and F. Inam, “Sequestration of chromium( vi ) and nickel( ii ) heavy metals from unhygienic water via sustainable and innovative magnetic nanotechnology,” Nanoscale Adv., vol. 6, no. 1, pp. 287–301, Dec. 2023. https://doi.org/10.1039/D3NA00923H.

A. Ayele and Y. G. Godeto, “Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups,” J Chem, vol. 2021, no. 1, p. 7694157, Jan. 2021. https://doi.org/10.1155/2021/7694157

J. Jiang et al., “Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater,” Environ. Poll., vol. 340, art. 122830, Jan. 2024. https://doi.org/10.1016/J.ENVPOL.2023.122830

Ministerio de Ambiente y Desarrollo Sostenible, “Resolucion 631 de 2015 vertimientos,” 2015. [Online]. Available: https://www.minambiente.gov.co/wp-content/uploads/2021/11/resolucion-631-de-2015.pdf

B. Gupta, A. Mishra, R. Singh, and I. S. Thakur, “Fabrication of calcite based biocomposites for catalytic removal of heavy metals from electroplating industrial effluent,” Environ. Technol. Innov., vol. 21, art. 101278, Feb. 2021. https://doi.org/10.1016/J.ETI.2020.101278

Y. Wang et al., “Research status, trends, and mechanisms of biochar adsorption for wastewater treatment: A scientometric review,” Environ. Sci. Eur., vol. 36, no. 1, pp. 1–17, Feb. 2024. https://doi.org/10.1186/S12302-024-00859-Z

F. Younas et al., “Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications,” Water, vol. 13, no. 2, art. 215, Jan. 2021. https://doi.org/10.3390/W13020215

S. Satyam and S. Patra, “Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review,” Heliyon, vol. 10, no. 9, art. e29573, May 2024. https://doi.org/10.1016/J.HELIYON.2024.E29573

R. Yousef, H. Qiblawey, and M. H. El-Naas, “Adsorption as a process for produced water treatment: A review,” Processes, vol. 8, no. 12, art. 1657, Dec. 2020. https://doi.org/10.3390/PR8121657

M. Ince and O. Kaplan Ince, “An overview of adsorption technique for heavy metal removal from water/wastewater: A critical review,” Int. J. Pure Appl. Sci., vol. 3, no. 2, pp. 10–19, 2017. https://doi.org/doi.org/10.29132/ijpas.358199

A. F. Taiwo and N. J. Chinyere, “Sorption characteristics for multiple adsorption of heavy metal ions using activated carbon from Nigerian bamboo,” J. Mater. Sci. Chem. Eng., vol. 04, no. 04, pp. 39–48, 2016. https://doi.org/10.4236/MSCE.2016.44005

H. Sukmana, N. Bellahsen, F. Pantoja, and C. Hodur, “Adsorption and coagulation in wastewater treatment – Review,” Prog. Agri. Eng. Sci., vol. 17, no. 1, pp. 49–68, Nov. 2021. https://doi.org/10.1556/446.2021.00029

K. Erattemparambil, L. Mohan, N. Gnanasundaram, and R. Krishnamoorthy, “Insights into adsorption theory of phenol removal using a circulating fluidized bed system,” Arab. J. Chem., vol. 16, no. 6, art. 104750, 2023. https://doi.org/10.1016/j.arabjc.2023.104750

W. Liu et al., “Adsorption-based post-combustion carbon capture assisted by synergetic heating and cooling,” Renew. Sust. Energy Rev., vol. 191, art. 114141, 2024. https://doi.org/10.1016/j.rser.2023.114141

Y. Gao et al., “Interpretation of the adsorption process of toxic Cd2+ removal by modified sweet potato residue,” RSC Adv., vol. 14, no. 1, pp. 433–444, 2024. https://doi.org/10.1039/d3ra06855b

R. Lekshmi et al., “Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa,” Chemosphere, vol. 306, p. 135479, Nov. 2022. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135479

R. M. Mohamed et al., “Adsorption of heavy metals on banana peel bioadsorbent,” J. Phys. Conf. Ser., vol. 1532, no. 1, art. 012014, Jun. 2020. https://doi.org/10.1088/1742-6596/1532/1/012014

T. Arsenie, I. G. Cara, M. C. Popescu, I. Motrescu, and L. Bulgariu, “Evaluation of the adsorptive performances of rapeseed waste in the removal of toxic metal ions in aqueous media,” Water, vol. 14, no. 24, art. 4108, Dec. 2022. https://doi.org/10.3390/W14244108

B. Siriweera and S. Jayathilake, “Modifications of coconut waste as an adsorbent for the removal of heavy metals and dyes from wastewater,” Int. J. Environ. Eng., vol. 10, no. 4, art. 329, 2020. https://doi.org/10.1504/IJEE.2020.110458

C. T. Tovar, Á. V. Ortiz, and M. J. Villadiego, “Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente,” Rev. UDCA Act. & Div. Cient., vol. 20, no. 1, pp. 139–147, 2017. https://doi.org/10.31910/rudca.v20.n1.2017.71

V. Marcantonio, E. Bocci, J. P. Ouweltjes, L. Del Zotto, and D. Monarca, “Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 6651–6662, 2020. https://doi.org/10.1016/j.ijhydene.2019.12.142

A. P. Sánchez, E. J. P. Sánchez, and R. M. S. Silva, “Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD® simulator,” Ingeniare, vol. 27, no. 1, pp. 142–150, 2019. https://doi.org/10.4067/S0718-33052019000100142

U. Upadhyay, S. Gupta, A. Agarwal, I. Sreedhar, and K. Latitha, “Process optimization at an industrial scale in the adsorptive removal of Cd2 + ions using dolochar via response surface methodology,” Environ. Sci. Poll. Res., pp. 0–27, 2021. https://doi.org/https://doi.org/10.21203/rs.3.rs-811892/v1

A. Hameed, B. H. Hameed, F. A. Almomani, M. Usman, M. M. Ba-Abbad, and M. Khraisheh, “Dynamic simulation of lead(II) metal adsorption from water on activated carbons in a packed-bed column,” Biomass Convers. Biorefin., vol. 14, no. 7, pp. 8283–8292, Apr. 2024. https://doi.org/10.1007/S13399-022-03079-8/TABLES/3

D. Mohan and C. U. Pittman, “Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water,” J. Hazard. Mater., vol. 137, no. 2, pp. 762–811, Sep. 2006. https://doi.org/10.1016/J.JHAZMAT.2006.06.060

B. Hemambika and V. R. Kannan, “Intrinsic characteristics of Cr6+-resistant bacteria isolated from an electroplating industry polluted soils for plant growth-promoting activities,” Appl. Biochem. Biotechnol., vol. 167, no. 6, pp. 1653–1667, Jul. 2012. https://doi.org/10.1007/S12010-012-9606-Y/METRICS

A. Agarwal, U. Upadhyay, I. Sreedhar, and K. L. Anitha, “Simulation studies of Cu(II) removal from aqueous solution using olive stone,” Clean. Mater., vol. 5, art. 100128, 2022. https://doi.org/10.1016/j.clema.2022.100128

J. Lara, C. Tejada, Á. Villabona, A. Arrieta, and C. Granados Conde, “Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao,” Rev. ION, vol. 29, no. 2, pp. 113–124, Jan. 2016. https://doi.org/10.18273/REVION.V29N2-2016009

F. Benyahia and K. E. O’Neill, “Enhanced voidage correlations for packed beds of various particle shapes and sizes,” Part. Sci. Tech., vol. 23, no. 2, pp. 169–177, 2005. https://doi.org/10.1080/02726350590922242

A. G. Dixon, “Correlations for wall and particle shape effects on fixed bed bulk voidage,” Can. J. Chem. Eng., vol. 66, no. 5, pp. 705–708, 1988. https://doi.org/10.1002/cjce.5450660501

B. K. Koua, P. M. E. Koffi, and P. Gbaha, “Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans,” J. Saudi Soc. Agri. Sci., vol. 18, no. 1, pp. 72–82, 2019. https://doi.org/10.1016/j.jssas.2017.01.002

R. Ragadhita, A. Bayu, and D. Nandiyanto, “Curcumin adsorption on zinc imidazole framework-8 particles: Isotherm adsorption using Langmuir, Freundlich, Temkin, And Dubinin-Radushkevich models,” J. Eng. Sci. Tech., vol. 17, no. 2, pp. 1078–1089, 2022. https://jestec.taylors.edu.my/Vol%2017%20Issue%202%20April%20%202022/17_2_19.pdf

S. Nikam, D. Mandal, and P. Dabhade, “LDF based parametric optimization to model fluidized bed adsorption of trichloroethylene on activated carbon particles,” Particuology, vol. 65, pp. 72–92, 2022. https://doi.org/10.1016/j.partic.2021.05.012

M. R. Fouad, “Physical characteristics and Freundlich model of adsorption and desorption isotherm for fipronil in six types of Egyptian soil,” Curr. Chem. Lett., vol. 12, no. 1, pp. 207–216, 2023. https://doi.org/10.5267/J.CCL.2022.8.003

J. G. Amrutha, C. R. Girish, B. Prabhu, and K. Mayer, “Multi-component Adsorption Isotherms: Review and Modeling Studies,” Environ. Proc., vol. 10, no. 2, pp. 1–52, Jun. 2023. https://doi.org/10.1007/S40710-023-00631-0/FIGURES/2

T. Ahmad et al., “Enhanced adsorption of bisphenol-A from water through the application of isocyanurate based hyper crosslinked resin,” J. Mol. Liq., vol. 395, art. 123861, Feb. 2024. https://doi.org/10.1016/J.MOLLIQ.2023.123861

S. Nikam, D. Mandal, and P. Dabhade, “LDF based parametric optimization to model fluidized bed adsorption of trichloroethylene on activated carbon particles,” Particuology, vol. 65, pp. 72–92, Jun. 2022. https://doi.org/10.1016/J.PARTIC.2021.05.012

R. Fran Mansa, A. Osong Patrick, S. Kumaresan, and T. Ming Ling, “Simulation of lead removal using palm kernel shell activated carbon in a packed bed column,” 2021. [Online]. Available: https://easychair.org/publications/preprint/GZFQ

D. C. D. Caldeira, C. M. Silva, F. de Ávila Rodrigues, and A. J. V. Zanuncio, “Aspen Plus simulation for effluent reuse in thermomechanical pulp mills,” Water Sci. Tech., vol. 88, no. 3, pp. 751–762, Aug. 2023. https://doi.org/10.2166/WST.2023.242

A. Bringas, E. Bringas, R. Ibañez, and M. F. San-Román, “Fixed-bed columns mathematical modeling for selective nickel and copper recovery from industrial spent acids by chelating resins,” Sep. Purif. Tech., vol. 313, art. 123457, May 2023. https://doi.org/10.1016/J.SEPPUR.2023.123457

H. Patel, “Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020. https://doi.org/10.1038/s41598-020-72583-6

M. Hardyianto Vai Bahrun, Z. Kamin, S. M. Anisuzzaman, A. Bono, and M. H. V Bahrun, “Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column,” J. Eng. Sci. Tech., vol. 16, no. 2, pp. 1213–1231, 2021. https://jestec.taylors.edu.my/Vol%2016%20issue%202%20April%202021/16_2_23.pdf

M. L. R. M. Lubiano, C. V. L. Manacup, A. N. Soriano, and R. V. C. Rubi, “Continuous biosorption of Pb2+ with bamboo shoots (Bambusa spp.) using aspen adsorption process simulation software,” ASEAN J. Chem. Eng., vol. 23, no. 2, pp. 153–166, 2023. https://doi.org/10.22146/AJCHE.77314

How to Cite

APA

González-Delgado, Ángel D., Villabona Ortiz , Ángel, and Tejada Tovar, C. N. (2025). Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L. Ingeniería, 30(3), e23141. https://doi.org/10.14483/23448393.23141

ACM

[1]
González-Delgado, Ángel D. et al. 2025. Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L. Ingeniería. 30, 3 (Nov. 2025), e23141. DOI:https://doi.org/10.14483/23448393.23141.

ACS

(1)
González-Delgado, Ángel D.; Villabona Ortiz , Ángel; Tejada Tovar, C. N. Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L. Ing. 2025, 30, e23141.

ABNT

GONZÁLEZ-DELGADO, Ángel D.; VILLABONA ORTIZ , Ángel; TEJADA TOVAR, Candelaria Nahir. Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L. Ingeniería, [S. l.], v. 30, n. 3, p. e23141, 2025. DOI: 10.14483/23448393.23141. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/23141. Acesso em: 8 dec. 2025.

Chicago

González-Delgado, Ángel D., Ángel Villabona Ortiz, and Candelaria Nahir Tejada Tovar. 2025. “Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L”. Ingeniería 30 (3):e23141. https://doi.org/10.14483/23448393.23141.

Harvard

González-Delgado, Ángel D., Villabona Ortiz , Ángel and Tejada Tovar, C. N. (2025) “Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L”., Ingeniería, 30(3), p. e23141. doi: 10.14483/23448393.23141.

IEEE

[1]
Ángel D. González-Delgado, Ángel Villabona Ortiz, and C. N. Tejada Tovar, “Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L”., Ing., vol. 30, no. 3, p. e23141, Nov. 2025.

MLA

González-Delgado, Ángel D., et al. “Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L”. Ingeniería, vol. 30, no. 3, Nov. 2025, p. e23141, doi:10.14483/23448393.23141.

Turabian

González-Delgado, Ángel D., Ángel Villabona Ortiz, and Candelaria Nahir Tejada Tovar. “Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L”. Ingeniería 30, no. 3 (November 13, 2025): e23141. Accessed December 8, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/23141.

Vancouver

1.
González-Delgado Ángel D, Villabona Ortiz Ángel, Tejada Tovar CN. Use of Computational Tools in the Modeling of Columns for Cr(VI) Adsorption in Wastewater by Means of Theobroma cacao L. Ing. [Internet]. 2025 Nov. 13 [cited 2025 Dec. 8];30(3):e23141. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/23141

Download Citation

Visitas

25

Dimensions


PlumX


Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
317
145

Indexed in

Editor & editorial board
profiles
Loading...