DOI:

https://doi.org/10.14483/23448393.23371

Publicado:

2025-11-13

Número:

Vol. 30 Núm. 3 (2025): Septiembre-diciembre

Sección:

Ingeniería Civil

Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records

Análisis de la siniestralidad vial en Colombia: patrones departamentales y tendencias a partir de registros vehiculares

Autores/as

Palabras clave:

accident rate, vehicles, traffic, binomial analysis, road safety, clusters (en).

Palabras clave:

accidentalidad, vehículos, tráfico, análisis binomial, seguridad vial, conglomerados (es).

Resumen (en)

Context: The high rate of road accidents in Colombia constitutes a serious public health issue. This study seeks to identify spatial patterns in the occurrence of traffic accidents at the departmental level. Based on these data, the aim is to better understand the factors that influence road accidents in order to propose more effective prevention strategies.

Method: To this effect, a cluster analysis based on the K-means algorithm and binomial analysis was used. These statistical techniques allowed grouping Colombian departments according to their accident profile, considering variables such as geographical location, incidents, the validity of vehicle documents, and the presence of new road actors.

Results: The results of the analysis revealed three groups of departments with different accident rates: high, medium, and low. This classification makes it possible to identify regions with a higher risk of suffering road accidents and determine their associated factors, such as population density and road conditions. This study demonstrates the usefulness of cluster analysis to identify spatial patterns in road accidents at the departmental level.

Conclusions: The results obtained contribute to a better understanding of the factors that influence the occurrence of traffic accidents in Colombia, which enables the design of more focused and effective prevention strategies. Future research could delve into the analysis of the socioeconomic and cultural factors associated with road accidents, in addition to exploring the application of predictive models to anticipate the occurrence of accidents.

Resumen (es)

Contexto: La alta accidentalidad vial en Colombia constituye un serio problema de salud pública. Este estudio busca identificar patrones a nivel departamental en la ocurrencia de accidentes de tránsito. Con base en los datos de accidentalidad, se busca comprender mejor los factores que influyen en los sucesos para proponer estrategias de prevención más efectivas.

Método: Se utilizó un análisis de conglomerados basado en el algoritmo K-medias y un análisis binomial. Estas técnicas estadísticas permitieron agrupar los departamentos colombianos según su perfil de accidentalidad, considerando variables como: la ubicación geográfica, los incidentes, la validez de los documentos vehiculares y la presencia de actores viales.

Resultados: Los resultados del análisis mostraron tres grupos de departamentos con diferentes tasas de accidentalidad: alta, media y baja. Esta clasificación permite identificar las regiones con mayor riesgo de sufrir accidentes viales y determinar los factores asociados, como la densidad poblacional y el estado de las carreteras. Este estudio demuestra la utilidad del análisis de conglomerados para identificar patrones de comportamiento espacial en accidentalidad vial a nivel departamental.

Conclusiones: Los resultados obtenidos contribuyen a una mejor comprensión de los factores que influyen en la ocurrencia de accidentes de tránsito en Colombia, lo que permite diseñar estrategias de prevención específicas y eficaces. Futuras investigaciones podrían profundizar el análisis, con factores socioeconómicos y culturales asociados a los accidentes de tránsito. Además, de explorar la aplicación de modelos predictivos para anticipar la ocurrencia de accidentes.  

Referencias

National Road Safety Agency, “Anuario nacional de siniestralidad vial – Colombia 2023,” 2023. [Online]. Available: https://ansv.gov.co/es/observatorio/publicaciones/anuario-nacional-de-siniestralidad-vial-colombia-2023

J. I. Ruiz and A. N. Herrera, "Accidentes de tránsito con heridos en Colombia según fuentes de información: caracterización general y tipologías de accidentes," Revista CES Psicol., vol. 9, no.1, pp. 32-56, 2016. http://www.scielo.org.co/pdf/cesp/v9n1/v9n1a04.pdf

D. Herrero-Fernández, M. Oliva-Macías, and P. Parada-Fernández, "Prediction of accident rate from risky and aggressive behavior behind the wheel: Differences by age and gender," Rev. Psicopatol. Psicol. Clin., vol. 24, no. 3, pp. 159–169, 2019. https://doi.org/10.5944/rppc.23370

J. D. Parra-Quintero, J. A. Barrera-Cardozo, and P. Ramírez-Soto, "Factorial analysis of road infrastructure related to traffic accidents occurred in Neiva in the years 2017–2018," Dyna, vol. 91, no. 231, pp. 99–107, 2024. https://doi.org/10.15446/dyna.v91n231.110396

R. Mejia, E. Quinteros, and A. Ribo Arnau, "Áreas geográficas con mayor concentración de accidentes de tránsito en San Salvador, El Salvador: un análisis espacial del periodo 2014-2018," Rev. Peru. Med. Exp. Salud Publica, vol. 40, no. 4, pp. 413–425, 2023. https://doi.org/10.17843/rpmesp.2023.404.12963

Consejo Colombiano de Seguridad, "Cómo afecta el mal estado de las carreteras a la seguridad en el vehículo," Oct. 12, 2023. [Online]. Available: https://ccs.org.co/como-afecta-el-mal-estado-de-las-carreteras-a-la-seguridad-en-el-vehiculo/

AASHTO, Highway safety manual, 1st ed. Washington, DC, USA: American Association of State Highway and Transportation Officials, 2010.

I. Karamanlis, A. Nikiforiadis, G. Botzoris, A. Kokkalis, and S. Basbas, “Towards sustainable transportation: The role of black spot analysis in improving road safety,” Sustainability, vol. 15, no. 19, art. 14478, 2023. https://doi.org/10.3390/SU151914478

Ministerio de Transporte, "La Agencia Nacional de Seguridad Vial, ANSV, avanza con sus programas en los territorios del país," 2023. [Online]. Available: https://mintransporte.gov.co/publicaciones/11348/la-agencia-nacional-de-seguridad-vial-ansv-avanza-con-sus-programas-en-los-territorios-del-pais/

Ministerio de Transporte, Plan Nacional de Seguridad Vial 2022-2031. Bogotá, Colombia: Ministerio de Transporte, 2022.

Observatorio Vial Argentina, "Infraestructura vial: factor de riesgo de la seguridad vial," 2020. [Online]. Available: https://www.argentina.gob.ar/seguridadvial/observatoriovialnacional/infraestructura-vial-factor-de-riesgo-de-la-seguridad-vial

J. Qiu, H. Wang, R. Jiang, W. Xiao, H. Chang, and S. Zhu, "Identification and analysis of serious conflicts in expressway transition areas," China Safety Sc.i J., vol. 32, no. 2, pp. 184–191, 2022. https://doi.org/10.16265/j.cnki.issn1003-3033.2022.02.025

C.-W. Choe, S. Lim, D. J. Kim, and H.-C. Park, "Development of Spatial Clustering Method and Probabilistic Prediction Model for Maritime Accidents," Appl. Ocean Res, vol. 154, art. 104317, 2025. https://doi.org/10.1016/j.apor.2024.104317

F. Á. C. Escobar, G. P. Buitrago, and F. A. Guío B., "Spatial analysis with weighted kernel groupings to determine risk sectors due to traffic accidents in urban area. Tunja analysis, Colombia," Cuad. Geogr. Rev. Colomb. Geogr, vol. 62, no. 1, pp. 45–58, 2023. https://doi.org/10.30827/cuadgeo.v62i1.18025

J. L. Montealegre Quijano and J. A. Garzón Quiroga, "Critical points of traffic accidents in Ibagué, Colombia," Estud. Demogr. Urbanos, vol. 36, no. 4, pp. 298–312, 2021. https://doi.org/10.24201/edu.v36i2.2035

S. Chatti, G. Rama Krishna, S. Krishna Mohan Rao, and P. Venketeswa Rao, "A method to find optimum number of clusters based on fuzzy silhouette on dynamic data set," Procedia Comput. Sci, vol. 46, pp. 346–353, 2015. https://doi.org/10.1016/j.procs.2015.02.030

Y. H. Caña, R. Gomero-Cuadra, R. P. Llerena, J. Armada, and C. R. Mejía, "Work-related accident rates at a metropolitan Lima hospital during the COVID-19 pandemic: A behavioral analysis,” Rev. Asoc. Esp. Espec. Med. Trab., vol. 32, no. 4, pp. 297–307, 2023. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S3020-11602023000400004

A. B. Silva and M. C. Oliveira, "Data integration process: An information management model for multiple databases on traffic accidents in Brazil," Epidemiol. Serv. Saude, vol. 27, no. 2, p. e201800218, 2018.2024. htttps://doi.org/10.5123/S1679-49742018000200018

V. Cantillo, P. Garcés, and L. Márquez, "Factors influencing the occurrence of traffic accidents in urban roads: A combined GIS-empirical Bayesian approach," Rev. Ing., vol. 40, no. 2, pp. 123–135, 2024. https://doi.org/10.15446/dyna.v83n195.47229

J. D. Alarcón, I. Gich Saladich, L. Vallejo Cuéllar, A. M. Ríos Gallardo, C. Montalvo Arce, and X. Bonfill Cosp, "Mortalidad por accidentes de tráfico en Colombia. Estudio comparativo con otros países," Rev. Esp. Salud Pública, vol. 92, art. e201807040, 2018. https://pubmed.ncbi.nlm.nih.gov/29967318/

G. Lozano Pérez, D. Muñoz Torres, and V. Villalba Vimos, "Road safety perspective in developing countries - Colombia," Rev. Espacios, vol. 39, no. 42, pp. 11-23, 2018. https://www.revistaespacios.com/a18v39n42/18394211.html

DANE, “Mapas Nacionales | GEOPORTAL.” [Online]. Available: https://geoportal.dane.gov.co/

L. Yue, C. Xiaoquan, D. Tian, and J. Feng , “Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm,’ Appl. Soft Comput., vol. 113, art. 107924, 2021. https://doi.org/10.1016/j.asoc.2021.107924

A. Baíllo y A. Grané, 100 problemas resueltos de estadística multivariante. Madrid, Spain: Delta Publicaciones Universitarias, 2007.

A. Jain, M. Murty, and P. Flynn, “Data Clustering: A Review,” ACM Comput. Surv., vol. 31, nº 3, pp. 264–323, 1999. https://doi.org/10.1145/331499.331504

J. L. Devore, Probability and statistics for engineering and the sciences, 8th ed. Boston, MA, USA: Brooks/Cole, Cengage Learning, 2012.

C. Rosas, C. Gaviria, and C. Calero, “Classification of Driver Behavior in Horizontal Curves of Two-Lane Rural Roads,” Rev. Fac. Ing., vol. 30, no. 57, art. e13410, 2021. https://doi.org/10.19053/01211129.v30.n57.2021.13410

H. Taherdoost and M. Madanchian, “A Comprehensive Overview of the ELECTRE Method in Multi Criteria Decision-Making,” J. Manage. Sci. Eng. Res., vol. 6, no. 2, pp. 5–16, 2023. https://doi.org/10.30564/jmser.v6i2.5637

F. Castro, “The geosimulation, a tool for the prevention of traffic accident,” Ing.Inv. Tecnol., vol. 19, no. 2, pp. 135–145, 2018. https://doi.org/10.22201/fi.25940732e.2018.19n2.012

A. C. Yeo, K. A. Smith, R. J. Willis, and M. Brooks, "Clustering technique for risk classification and prediction of claim costs in the automobile insurance industry," Intell. Syst. Account. Finance Manage., vol. 10, no. 1, pp. 39–50, 2001. https://doi.org/10.1002/ISAF.196

D. Wang, Y. Huang, and Z. Cai, "A two-phase clustering approach for traffic accident black spots identification: integrated GIS-based processing and HDBSCAN model," Int. J. Inj. Control Saf. Promot., vol. 30, no. 2, pp. 270–281, 2023. https://doi.org/10.1080/17457300.2022.2164309

B. Sui, N. Lubbe, and J. Bärgman, "A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of Automated Emergency Braking in China using in-depth Chinese crash data," Accid. Anal. Prev., vol. 132, art. 105242, 2019. https://doi.org/10.1016/j.aap.2019.07.018

S. S. Yassin and Pooja, "Road accident prediction and model interpretation using a hybrid K-means and random forest algorithm approach," SN Appl. Sci., vol. 2, no. 9, 2020. https://doi.org/10.1007/s42452-020-3125-1

Cómo citar

APA

Mora Chacón, K. F., Rosas López, C. D., y Ulchur Ruíz, M. (2025). Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records . Ingeniería, 30(3), e23371. https://doi.org/10.14483/23448393.23371

ACM

[1]
Mora Chacón, K.F. et al. 2025. Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records . Ingeniería. 30, 3 (nov. 2025), e23371. DOI:https://doi.org/10.14483/23448393.23371.

ACS

(1)
Mora Chacón, K. F.; Rosas López, C. D.; Ulchur Ruíz, M. Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records . Ing. 2025, 30, e23371.

ABNT

MORA CHACÓN, Karla Fernanda; ROSAS LÓPEZ, Cristian David; ULCHUR RUÍZ, Mariana. Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records . Ingeniería, [S. l.], v. 30, n. 3, p. e23371, 2025. DOI: 10.14483/23448393.23371. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/23371. Acesso em: 29 dic. 2025.

Chicago

Mora Chacón, Karla Fernanda, Cristian David Rosas López, y Mariana Ulchur Ruíz. 2025. «Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records ». Ingeniería 30 (3):e23371. https://doi.org/10.14483/23448393.23371.

Harvard

Mora Chacón, K. F., Rosas López, C. D. y Ulchur Ruíz, M. (2025) «Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records », Ingeniería, 30(3), p. e23371. doi: 10.14483/23448393.23371.

IEEE

[1]
K. F. Mora Chacón, C. D. Rosas López, y M. Ulchur Ruíz, «Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records », Ing., vol. 30, n.º 3, p. e23371, nov. 2025.

MLA

Mora Chacón, Karla Fernanda, et al. «Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records ». Ingeniería, vol. 30, n.º 3, noviembre de 2025, p. e23371, doi:10.14483/23448393.23371.

Turabian

Mora Chacón, Karla Fernanda, Cristian David Rosas López, y Mariana Ulchur Ruíz. «Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records ». Ingeniería 30, no. 3 (noviembre 13, 2025): e23371. Accedido diciembre 29, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/23371.

Vancouver

1.
Mora Chacón KF, Rosas López CD, Ulchur Ruíz M. Analysis of Road Accidents in Colombia: Departmental Patterns and Trends from Vehicle Records . Ing. [Internet]. 13 de noviembre de 2025 [citado 29 de diciembre de 2025];30(3):e23371. Disponible en: https://revistas.udistrital.edu.co/index.php/reving/article/view/23371

Descargar cita

Visitas

28

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

##plugins.generic.pfl.publicationFactsTitle##

Metric
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.peerReviewers## 
2.4 promedio

##plugins.generic.pfl.reviewerProfiles##  N/D

##plugins.generic.pfl.authorStatements##

##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.dataAvailability## 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
##plugins.generic.pfl.funders## 
##plugins.generic.pfl.funders.no##
32% con financiadores
##plugins.generic.pfl.competingInterests## 
N/D
##plugins.generic.pfl.averagePercentYes##
Metric
Para esta revista
##plugins.generic.pfl.otherJournals##
##plugins.generic.pfl.articlesAccepted## 
Artículos aceptados: 78%
33% aceptado
##plugins.generic.pfl.daysToPublication## 
##plugins.generic.pfl.numDaysToPublication##
145

Indexado: {$indexList}

    ##plugins.generic.pfl.indexedList##
##plugins.generic.pfl.editorAndBoard##
##plugins.generic.pfl.profiles##
##plugins.generic.pfl.academicSociety## 
Universidad Distrital Francisco José de Caldas
Loading...