Kinetics of nanoparticles in sanguinean torrent by approximation, Womersley flow

Cinética de nanopartículas en torrente sanguíneo por aproximación, flujo de Womersley

Palabras clave: Blood flow, Nanoparticles, Numeric (en_US)
Palabras clave: Flujo sanguíneo, Nanopartículas, Numérico (es_ES)

Resumen (en_US)

Nowadays, cancer is one of the most important morbidity and mortality factors in the world. For these reasons, efforts have been made to optimize the treatments that are used by specialists in the oncology area. One of the main difficulties is the lack of mathematical and statistical models that allow to characterize the performance of the treatments; one of these innovative treatment trends consists of the use of magnetic nanoparticles which are incorporated into the bloodstream either in order to diagnose or transport medications to the affected areas. This paper presents the process of estimating local minimums for a particular case of a function in R3 –defined by parameters r and t– which allows modeling the kinetics of nanoparticles.

Resumen (es_ES)

En la actualidad el cáncer es uno de los factores de mayor morbilidad y mortalidad a nivel mundial, por tal razón se han aunado esfuerzos con el fin de optimizar los tratamientos que son usados por especialistas en el área oncológica. Una de las principales dificultades radica en la carencia de modelos matemáticos y estadísticos que permitan caracterizar el desempeño de los tratamientos; en este sentido, una de las tendencias innovadoras de tratamiento consiste en emplear nanopartículas magnéticas que se incorporan al torrente sanguíneo ya sea con el fin de diagnosticar o transportar medicamentos a las zonas afectadas. En este artículo se presenta el proceso de estimación de mínimos locales para un caso particular de una función en R3 –definida por parámetros r y t– que permite modelar la cinética de las nanopartículas

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] E. Cherry and J. Eaton, “Simulation of Magnetic Particles in the Bloodstream for Magnetic Drug Targeting Applications”, 8th International Conference on Multiphase Flow, 2012.

[2] M. M. Larimi, A. Ramiar and A. A. Ranjbar, “Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel”, Journal of Magnetism and Magnetic Materials, vol. 362, 2014, pp. 58–71. https://doi.org/10.1016/j.jmmm.2014.03.002.

[3] S. Sharma, V. K. Katiyar and U. Singh, “Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field”, Journal of Magnetism and Magnetic Materials, vol. 379, 2015, pp. 102–107. https://doi.org/10.1016/j.jmmm.2014.12.012

[4] S. Kenjereš, “Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields”, International Journal of Heat and Fluid Flow, vol. 29, no. 3, 2008, pp. 752–764. https://doi.org/10.1016/j.ijheatfluidflow.2008.02.014

[5] B. A. Chabner, T. G. Roberts, “Timeline: chemotherapy and the war on cancer”, Nat. Rev. Cancer, vol. 5, no. 1, 2005, pp. 65–72. https://doi.org/10.1038/nrc1529

[6] F. J. Calvo Plaza, "Simulación del flujo sanguíneo y su interacción con la pared arterial mediante modelos de elementos finitos", thesis Ph.D., E.T.S.I. Caminos, Canales y Puertos (UPM), 2006.
Cómo citar
Camargo Casallas, L. H., Pantoja Benavides, J. F., & Rodríguez Patarroyo, D. J. (2019). Cinética de nanopartículas en torrente sanguíneo por aproximación, flujo de Womersley. Visión electrónica, 13(1), 33-38. https://doi.org/10.14483/22484728.14409
Número preliminar
Publicado: 2019-01-31
Sección
Visión Investigadora

Artículos más leídos del mismo autor/a