Raspberry PI 3 RF signal generation system

Sistema de generación de señales RF mediante raspberry PI 3

  • Juan Carlos Martínez-Quintero
  • Edith Paola Estupiñán-Cuesta
  • Víctor Daniel Rodríguez-Ortega
Palabras clave: Fractional divisor, Radiofrequency, Raspberry Pi, RF generator (en_US)
Palabras clave: Divisor fraccional, Radiofrecuencia, Raspberry Pi, Generador RF (es_ES)

Resumen (en_US)

Radio frequency signal generators (RF) are instruments used to test reception equipment and RF components like filters, amplifiers, attenuators, among others. On the other hand, they reinforce the teaching-learning processes and they are widely used in research in the telecommunications field. This document provides the first stage of a low-cost signal generator design by using RaspBerry Pi 3, with the documentary exploration about this kind of applications. After that, a recognition of the RaspBerry Pi 3 is done at hardware and software level. Finally, an application of an FM signal generator with RaspBerry in a frequency of 101.3 MHz is evaluated, which does not require any additional hardware. This signal was captured using a spectrum analyzer, which determined good quality of the modulated signal in terms of power, bandwidth and SNR (Signal Noise Ratio). However, there are some unwanted harmonic components

Resumen (es_ES)

Los generadores de señal de Radio Frecuencia (RF) son instrumentos usados para probar equipos de recepción y componentes RF como filtros, amplificadores, atenuadores, entre otros. Por otro lado, refuerzan procesos de enseñanza-aprendizaje y son ampliamente usados en investigación en el área de telecomunicaciones. Este documento evidencia la primera etapa para el diseño de un generador de señal de bajo costo mediante RaspBerry Pi 3, con la exploración documental sobre este tipo de aplicaciones, posteriormente se procede al reconocimiento de la RaspBerry Pi 3 a nivel de hardware y software, finalmente se evalúa una aplicación de generador de señal FM con RaspBerry a una frecuencia de 101.3 MHz, la cual no requiere hardware adicional. Esta señal fue captada mediante un analizador de espectros determinando una buena calidad de la señal modulada en términos de potencia, ancho de banda y SNR (Signal Noise Ratio), sin embargo, se evidencian fuertes componentes armónicos no deseados.


La descarga de datos todavía no está disponible.


[1] Raspberry Pi Foundation, “Raspberry Pi 3 Model B+”, 2018. [Online]. Available at: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

[2] Raspberry Pi Foundation, “Raspberry Pi 3 Model B+ - Product Brief”, 2018. [Online]. Available at: https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf

[3] Raspberry Pi Foundation, “Raspberry Pi 3 Model B+ Schematic”, 2018. [Online]. Available at: https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3bplus_1p0_reduced.pdf

[4] P. Jovanović, P. Petrović, B. Pavić and N. Remenski, “Implementation of RF Signal Generator for Demodulator/Receiver Testing in SDR Design”, 19th Telecommunications Forum, TELFOR, 2011, pp. 282–284. https://doi.org/10.1109/TELFOR.2011.6143545

[5] R. Di, S. Peng, S. Taylor and Y. Morton, “A USRP-based GNSS and Interference Signal Generator and Playback System”, Proceedings of the IEEE/ION Position, Location and Navigation Symposium, 2012, pp. 470–478. https://doi.org/10.1109/PLANS.2012.6236916

[6] I. Lahbib, M. Doukkali, P. Descarnps, C. Kelma and O. Tesson, “Design of an embedded RF signal generator for BIST application”, IEEE 11th International New Circuits and Systems Conference (NEWCAS), 2013, pp. 9–12. https://doi.org/10.1109/NEWCAS.2013.6573661

[7] I. Oihara, T. Fujimura, H. Tozuka and T. Kimura, “The Development and Performance of Chirp Pulse Generator and processor for Pi-SAR-L2”, Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 2013, pp. 428–431.

[8] J. Zhang, F. Mu, Q. Shi and X. He, “Design and implementation of multi-channel wideband and RF signal generator”, IEEE 17th International Conference on Computational Science and Engineering, 2014, pp. 1566–1569. https://doi.org/10.1109/CSE.2014.289

[9] R. Sundaramurthy and V. Nagarajan, “Design and Implementation of Reconfigurable Virtual Instruments using Raspberry Pi Core”, International Conference on Communication and Signal Processing (ICCSP), 2016, pp. 2309–2313. https://doi.org/10.1109/ICCSP.2016.7754107

[10] A. Pal, A. Mehta, H. Goonesinghe, D. Mirshekar-Syahkal and H. Nakano, “Conformal Beam-Steering Antenna Controlled by a Raspberry Pi for Sustained High-Throughput Applications”, IEEE Transactions on Antennas Propagation, vol. 66 no. 2, 2018, pp. 918–926. https://doi.org/10.1109/TAP.2017.2779518

[11] H. Ali and E. Erçelebi, “Design and Implementation of FMCW Radar Using the Raspberry Pi Single Board Computer”, 10th International Conference on Electrical and Electronics Engineering (ELECO), 2017, pp. 1372–1374.

[12] M. Richardson, “Turning the Raspberry Pi into an FM Transmitter - Imperial College Robotics Society”, 2015. [Online]. Available at: http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter

[13] GitHub, “Radio Frequency transmitter software on Raspberry Pi”, 2013. [Online]. Available at: https://github.com/F5OEO/rpitx
Cómo citar
Martínez-Quintero , J. C., Estupiñán-Cuesta, E. P., & Rodríguez-Ortega, V. D. (2019). Sistema de generación de señales RF mediante raspberry PI 3. Visión electrónica, 13(2), 294-299. https://doi.org/10.14483/22484728.15160
Publicado: 2019-07-26
Visión de Caso