DOI:

https://doi.org/10.14483/22484728.17427

Publicado:

2021-01-30

Número:

Vol. 15 Núm. 1 (2021)

Sección:

Visión Actual

NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection

Estaciones satelitales meteorológicas NOAA: Estado del arte, perspectiva y proyección futura

Autores/as

Palabras clave:

NOAA, Satélite, Radio definido por software, Antena, Procesamiento Digital de Señales (es).

Palabras clave:

NOAA, Satellite, Software Defined Radio, Antenna, Digital Signal Processing (en).

Descargas

Resumen (en)

This document presents a documentary review of the impact done by ground satellite stations linked to NOAA's meteorological satellites, highlighting the implementation of software defined radio and some possible applications that could be given to satellite stations in terms of data and information processing. This work is done in order to find the main characteristics of these satellite communications systems and several applications, which are oriented towards the monitoring of natural phenomena for documentation and prevention; presenting the projection with the implementation is in Cloud and research through years.

Resumen (es)

En este documento se realiza una revisión documental del impacto de la implementación de estaciones satelitales terrestres enlazadas a los satélites meteorológicos de la entidad NOAA resaltando la implementación de radio definido por software  y las posibles aplicaciones que se le podrían das a las estaciones satélites en cuanto al procesamiento de datos e información; este trabajo es realizado con el fin de hallar las principales características del estos sistemas de comunicaciones satelitales y las diferentes aplicaciones, las cuales esta orientadas hacia el control y monitoreo de fenómenos naturales para documentación y prevención de estos; presentando la proyección con la implementación en Cloud y las investigaciones en los años.

Referencias

US Department of Commerce NOAA, “Your National Weather Service: Evolving to Build a Weather-Ready Nation”, 2017. [Online]. Available at https://www.weather.gov/about/wrn

NOAA, “About Our Agency | National Oceanic and Atmospheric Administration”. [Online]. Available at https://www.noaa.gov/about-our-agency

NOAA, “Marina y aviación | Administración Nacional Oceánica y Atmosférica”, 2020. [Online]. Available at https://www.noaa.gov/marine-aviation

N. NESDIS, “About | NOAA National Environmental Satellite, Data, and Information Service (NESDIS)”, 2019. [Online]. Available at https://www.nesdis.noaa.gov/content/about

NOAA, “Gráficos | Administración Nacional Oceánica y Atmosférica”, 2020. [Online]. Available at https://www.noaa.gov/charting

NOAA, “Educación Administración Nacional Oceánica y Atmosférica”, 2019. [Online]. Available at https://www.noaa.gov/education

N. N. O. and A. A. US Department of Commerce, “National Oceanic and Atmospheric Administration (NOAA) Staff Directory Page”, 2018.

N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service”, 2019.

R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data”, 2008. [Online]. Available at https://www.oecd.org/sti/ieconomy/40066192.pdf

H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A Case Study of Houston”, 2007. [Online]. Available at https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSInformation_Houston-Galveston.pdf

NASA, “Órbitas de Satélites”, 2020. [Online]. Available at https://scool.larc.nasa.gov/Spanish/orbits-sp.html

N. OSPO, “GOES Status - Office of Satellite and Product Operations”, 2019. [Online]. Available at https://www.ospo.noaa.gov/Operations/GOES/status.html

N. OSPO, “POES Operational Status - POES Status - OSPO”, 2019. [Online]. Available at https://www.ospo.noaa.gov/Operations/POES/status.html

NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage | NOAA National Data”, 2020. [Online]. Available at https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage

N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations”, 2016. [Online]. Available at https://www.ospo.noaa.gov/Operations/SNPP/status.html

X. Zou, X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary”, IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018.

X. Tian, X. Zou, N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASES BETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary, IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018. http://doi.org/10.1109/IGARSS.2018.8519416

W. Wang, C. Cao, Y. Bai, S. Blonski, M. A. Schull, “Assessment of the NOAA S-NPP VIIRS geolocation reprocessing improvements”, Remote Sens., vol. 9, no. 10, 2017. http://doi.org/10.3390/rs9100974

N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR”, 2020. [Online]. Available at https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16&sector=nsa

S. A. Buehler, V. O. John, A. Kottayil, M. Milz, P. Eriksson, “Efficient radiative transfer simulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing”, J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010. http://doi.org/10.1016/j.jqsrt.2009.10.018

U.S. DEPARTMENT OF COMERCE, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations”, 2009. [Online]. Available at https://noaasis.noaa.gov/NOAASIS/pubs/Users_Guide-Building_Receive_Stations_March_2009.pdf

J. Mitola, “The Software Radio Architecture”, Softw. Radio Technol., vol. 33, pp. 26–38, 2009. http://doi.org/10.1109/9780470546444.ch1

V. Dascal, P. Dolea, O. Cristea, P. Tudor, “Advanced Vhf Station Noaa Weather Satellite Apt Image Reception”, Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.

C. Bosquez, A. Ramos, L. Noboa, “System for receiving NOAA meteorological satellite images using software defined radio”, Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0–3, 2016. http://doi.org/10.1109/ANDESCON.2016.7836233

C. Velasco, C. Tipantuna, “Meteorological picture reception system using software defined radio (SDR)”, 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM, pp. 1–6, 2017. http://doi.org/10.1109/ETCM.2017.8247551

E. B. Mikkelsen, “The Design of a Low-Cost Beacon Receiver System using Software Defined Radio”, Inst. Elektron. og telekommunikasjo, pp. 1–83, 2009. [Online]. Available at http://hdl.handle.net/11250/2369478

D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, E. W. R. Pereira, “Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil”, An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018. http://doi.org/10.1590/0001-3765201820170955

A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, F. Aguado Agelet, “Integrating small satellite communication in an autonomous vehicle network: A case for oceanography”, Acta Astronaut., vol. 145, pp. 229–237, 2018. http://doi.org/10.1016/j.actaastro.2018.01.022

J. lee Min, “Decoding Signals from Weather Satellites Using Software Defined Radio”, Electron. Theses Diss., vol. 3, no. 2, pp. 1–70, 2018. http://doi.org/10.18041/2382-3240/saber.2010v5n1.2536

Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500”, Screen. Icom, Osaka, pp. 45–49, 2006. [Online]. Available at http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx

National Instruments, “SPECIFICATIONS USRP-2920”, 2017. https://www.ni.com/pdf/manuals/375839c.pdf

RTL-SDR, “RTL-SDR Blog V3 Datasheet”, 2018. [Online]. Available at https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3-Datasheet.pdf

N. Crisan and L. Cremene, “NOAA Signal Decoding and Image Processing Using GNU-Radio”, Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.

D. Aguirre, P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with double layer and air substrate, for weather satellite reception”, 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017. http://doi.org/10.1109/FGCT.2017.8103395

Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, W. A. Karimah, “Design of Double Cross Dipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application”, J. Phys., vol. 13, 2019. http://doi.org/10.1088/1742-6596/1364/1/012059

M. Fathurahman, Zulhelman, A. Maulana, M. Widyawati, “Design and Development of Dipole Antenna for NOAA Satellite Image Acquisition System and Processing”, J. Phys. Conf. Ser., vol. 1364, no. 1, 2019. http://doi.org/10.1088/1742-6596/1364/1/012025

F. Escobedo, H. Alvarez, H. Salazar, C. Percing, R. De Oca, “Low-cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19”, Proc. 2019 IEEE Sustain. Cities, pp. 1–6, 2019. https://doi.org/10.1109/SCLA.2019.8905749

A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images”, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019. https://doi.org/10.14569/ijacsa.2019.0100557

M. L. Keefer, “Evaluating the NOAA Coastal and Marine Ecological Classification Standard in estuarine systems: A Columbia River Estuary case study”, Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008. https://doi.org/10.1016/j.ecss.2007.11.020

A. K. Mitra, P. K. Kundu, A. K. Sharma, S. K. Roy Bhowmik, “A neural network approach for temperature retrieval from AMSU-a measurements onboard NOAA-15 satellites and a case study during Gonu cyclone”, Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.

D. J. Schneider, M. J. Pavolonis, “Advances in volcano monitoring: the role of jpss instruments U. S.”, IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017. https://doi.org/10.1109/IGARSS.2017.8127579

C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, F. Vargas, “Detección de incendios forestales utilizando imágenes NOAA/16-LAC en Chile”, Bosque, vol. 28, no. 2, pp. 119–128, 2007. https://doi.org/10.4067/s0717-92002007000200004

L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, S. Salcedo-Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data”, Atmosfera, vol. 30, no. 1, pp. 1–10, 2017. https://doi.org/10.20937/ATM.2017.30.01.01

A. Antón, R. Martínez, M. A. Salas, A. Torre, “Performance analysis and implementation of spatial and blind beamforming algorithms”, European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.

S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, G. Sindic-Rancic, “Validation of noaa’s near real-time ascat ocean vector winds”, Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008. https://doi.org/10.1109/IGARSS.2008.4778807

A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, G. Martin, “Community satellite processing package from direct broadcast: providing real-time satellite data to every corner of the world”, IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016. https://doi.org/10.1109/IGARSS.2016.7730443

K. R. Al-Rawi, J. L. Casanova, “Aplicación de las redes neuronales para el control y seguimiento en tiempo real de los incendios forestales mediante imágenes NOAA”, Aplicaciones VIII Congreso Nacional de teledeteccion, pp. 244–247, 1999.

Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento de huracanes (IDEAM, Columbia) | Organización Meteorológica Mundial”, 2013. [Online]. Available at https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y-seguimiento-de-huracanes-ideam-columbia

IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM”. [Online]. Available at http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp

NOAA, “National Oceanic and Atmospheric Administration | U.S. Department of Commerce”. [Online]. Available at https://www.noaa.gov/

IDEAM, “Home page”. [Online]. Available at http://www.ideam.gov.co/

J. Mahecha, J. Arévalo, M. Suárez, I. Mantilla, “Comparacion De Herramientas De Software Para La Coordinacion Internacional Del Roe En La Órbita Geoestacionaria”, Visión Electrónica, vol. 9, no. 1, pp. 5–12, 2015.

Google Cloud, “Weather, climate big data from NOAA now in cloud | Google Cloud Blog”, 2019. [Online]. Available at https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud

Amazon Web Services, “Registry of Open Data on AWS”, 2019. [Online]. Available at https://registry.opendata.aws/collab/noaa/

NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data | National Oceanic and Atmospheric Administration”, 2019. [Online]. Available at https://www.noaa.gov/media-release/cloud-platforms-unleash-full-potential-of-noaa-s-environmental-data

Cómo citar

APA

Peña-Becerra, J., Estupiñán-Cuesta, E. P., & Martínez-Quintero, J. C. (2021). NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection. Visión electrónica, 15(1), 123–132. https://doi.org/10.14483/22484728.17427

ACM

[1]
Peña-Becerra, J., Estupiñán-Cuesta, E.P. y Martínez-Quintero, J.C. 2021. NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection. Visión electrónica. 15, 1 (ene. 2021), 123–132. DOI:https://doi.org/10.14483/22484728.17427.

ACS

(1)
Peña-Becerra, J.; Estupiñán-Cuesta, E. P.; Martínez-Quintero, J. C. NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection. Vis. Electron. 2021, 15, 123-132.

ABNT

PEÑA-BECERRA, J.; ESTUPIÑÁN-CUESTA, E. P.; MARTÍNEZ-QUINTERO, J. C. NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection. Visión electrónica, [S. l.], v. 15, n. 1, p. 123–132, 2021. DOI: 10.14483/22484728.17427. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/17427. Acesso em: 2 dic. 2022.

Chicago

Peña-Becerra, Julián, Edith Paola Estupiñán-Cuesta, y Juan Carlos Martínez-Quintero. 2021. «NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection». Visión electrónica 15 (1):123-32. https://doi.org/10.14483/22484728.17427.

Harvard

Peña-Becerra, J., Estupiñán-Cuesta, E. P. y Martínez-Quintero, J. C. (2021) «NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection», Visión electrónica, 15(1), pp. 123–132. doi: 10.14483/22484728.17427.

IEEE

[1]
J. Peña-Becerra, E. P. Estupiñán-Cuesta, y J. C. Martínez-Quintero, «NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection», Vis. Electron., vol. 15, n.º 1, pp. 123–132, ene. 2021.

MLA

Peña-Becerra, J., E. P. Estupiñán-Cuesta, y J. C. Martínez-Quintero. «NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection». Visión electrónica, vol. 15, n.º 1, enero de 2021, pp. 123-32, doi:10.14483/22484728.17427.

Turabian

Peña-Becerra, Julián, Edith Paola Estupiñán-Cuesta, y Juan Carlos Martínez-Quintero. «NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection». Visión electrónica 15, no. 1 (enero 30, 2021): 123–132. Accedido diciembre 2, 2022. https://revistas.udistrital.edu.co/index.php/visele/article/view/17427.

Vancouver

1.
Peña-Becerra J, Estupiñán-Cuesta EP, Martínez-Quintero JC. NOAA Satellite Weather Stations: State of the Art, Perspective and Future Projection. Vis. Electron. [Internet]. 30 de enero de 2021 [citado 2 de diciembre de 2022];15(1):123-32. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/17427

Descargar cita

Visitas

179

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a