Publicado:
2025-06-25Número:
Vol. 19 Núm. 1 (2025)Sección:
Visión InvestigadoraOmnidirectional acoustic source: design methodology and physical realization
Fuente acústica omnidireccional: metodología de diseño y realización física
Palabras clave:
Acoustic Radiation, Audio equipment, Measurement and Standardization, Omnidirectional sources (en).Palabras clave:
Radiación Acústica, Equipamiento de Audio, Fuente omnidireccional, mediciones y estandarización (es).Descargas
Resumen (en)
This paper details the design of a dodecahedron-type omnidirectional source for acoustic measurements. It begins with the geometric design of the dodecahedron, which has 12 pentagonal faces. Each face acts as a sound source, so its size must be adjusted according to the frequency range to be measured and the intended usage environment. The use of rigid and acoustically neutral materials, such as MDF or high-quality plastic, is proposed to avoid. unwanted interference and ensure uniform sound dispersion. The design includes a calibration method for adjusting each speaker to emit sound at the same intensity, as well as conducting tests in different environments using measurement microphones to fine-tune the calibration as needed. The selection of speakers considers uniform frequency response, low distortion, and high-quality materials to ensure reliable measurements. Additionally, an amplifier is selected to match the impedance and power of the speakers, offering high sound quality with low distortion, sufficient cooling, and adequate connectivity.
Resumen (es)
En este escrito se detalla el diseño de una fuente omnidireccional tipo dodecaedro para mediciones acústicas. Este comienza con el diseño geométrico del dodecaedro, que tiene 12 caras pentagonales. Cada cara actúa como una fuente de sonido, por lo que el tamaño debe ajustarse al rango de frecuencias a medir y al entorno de uso. Se propone la utilización de materiales rígidos y acústicamente neutros, como MDF o plástico de alta calidad, para evitar interferencias no deseadas y asegurar una dispersión de sonido uniforme. Se contempla el diseño del método de calibración del sistema con el ánimo de ajustar cada altavoz para emitir sonido con la misma intensidad y la realización de pruebas en diferentes entornos usando micrófonos de medición para ajustar la calibración según sea necesario. Se tiene en cuenta la selección de altavoces con respuesta en frecuencia uniforme, baja distorsión y materiales de alta calidad para asegurar mediciones fiables, además de la elección de un amplificador que coincida con la impedancia y potencia de los altavoces y que ofrezca alta calidad de sonido con baja distorsión y que proporcione suficiente enfriamiento y conectividad.
Referencias
ISO 3382-1:2009, “Acoustics — Measurement of room acoustic parameters — Part 1: Performance spaces.”
ASTM E2235-04, “Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods,” ASTM Int., 2004.
A. Farina, “Simultaneous measurement of impulse response and distortion with a swept-sine technique,” AES Convention, 2000.
S. Houterman, Design and Implementation of an Omnidirectional Acoustic Source, Master's thesis, Delft University of Technology, 2004.
M. Kuster and D. De Bree, “A new method to determine the frequency response of sound sources using a 3D sound intensity probe,” Acta Acustica united with Acustica, vol. 92, no. 1, pp. 1–9, 2006.
R. Thoma and R. Luebben, “Design of a lightweight dodecahedron loudspeaker for measuring room impulse responses,” Acta Acustica united with Acustica, vol. 100, no. 2, pp. 358–361, 2014.
LEQ Ingeniería Acústica, “Portafolio de servicios,” 2023. [Online]. Available: https://leqingenieria.com
Universidad de San Buenaventura Bogotá, “Grupo de investigación en ingeniería acústica,” 2024.
ISO 140-14:2004, “Acoustics — Measurement of sound insulation in buildings and of building elements — Part 14: Guidelines for special situations.”
R. A. González Bustamante, R. Ferro Escobar, y D. A. Ávila Delgado, “Smart cities in collaboration with the internet of things,” Visión Electrónica, vol. 14, no. 2, pp. 274–284, 2020.
R. Pelzer, J. Lokki, and T. Savioja, “Measurement and modeling of the radiation of a dodecahedron loudspeaker,” Journal of the Acoustical Society of America, vol. 132, no. 3, pp. 1454–1461, 2012.
J. Merimaa and V. Pulkki, “Spatial impulse response rendering I: Analysis and synthesis,” Journal of the Audio Engineering Society, vol. 53, no. 12, pp. 1115–1127, 2005.
C. Sayin, O. Kirkici, and T. Pratt, “Design and implementation of a directional parametric array loudspeaker system,” IEEE Trans. Audio Speech Lang. Process., vol. 15, no. 4, pp. 1339–1347, 2007.
J. Verheij, T. van der Kooij, and R. Vos, “A reciprocal approach to identify sources of noise and vibration in complex structures,” Journal of Sound and Vibration, vol. 305, no. 4–5, pp. 939–954, 2007.
D. A. Campo-Ceballos, K. J. Barco-Sotelo, H. F. Dorado-Ipia, C. A. Gaviria-López, “Analysis of temperature control effect in fluidized bed coffee roaster,” Visión Electrónica, vol. 14, no. 2, pp. 255–263, 2020.
L. F. Vargas-Pardo, F. N. Giraldo-Ramos, “Firefly algorithm for facility layout problem optimization,” Visión Electrónica, vol. 15, no. 2, pp. 218–225, 2021.
S. T. Piracoca-Peralta, E. Rivas-Trujillo, y H. Montaña-Quintero, “Generador axial para un generador eólico de baja potencia, selección, diseño y simulación en COMSOL multiphysic,” Visión Electrónica, vol. 15, no. 1, pp. 39–49, 2021.
N. J. Rodríguez-García, I. C. Nieto-Sánchez, J. N. Mora-Alfonso, “Laboratorios virtuales y remotos en electrónica y telecomunicaciones: una revisión técnica en educación,” Visión Electrónica, vol. 15, no. 2, pp. 181–189, 2021.
L. L. Hurtado-Cortés, J. A. Forero-Casallas, V. E. Ruiz-Rosas, “Artificial vision applied to manufacturing process,” Visión Electrónica, vol. 15, no. 1, pp. 113–122, 2021.
V. Naddeo et al., “Biological wastewater treatment and bioreactor design: a review,” Sustainable Environment Research, vol. 13, no. 6, pp. 56-78, 2022. [Online]. Available: https://sustainenvironres.biomedcentral.com/articles/10.1186/s42834-020-00013-2.
MathWorks, “Loudspeaker Modeling with Simscape,” MathWorks, Natick, MA, 2024.
MathWorks, “Fourier Transforms,” MathWorks, Natick, MA, 2024.
N. M. Papadakis and G. E. Stavroulakis, “Review of Acoustic Sources Alternatives to a Dodecahedron Speaker,” *Applied Sciences*, vol. 9, no. 18, art. 3705, Sep. 6, 2019. DOI: 10.3390/app9183705.
IEC 61672‑1:2013, “Electroacoustics – Sound level meters – Part 1: Specifications,” International Electrotechnical Commission, Geneva, 2013.
IEC 3382‑1:2009, “Acoustics – Measurement of room acoustic parameters – Part 1: Performance rooms,” International Electrotechnical Commission, Geneva, 2009.
P. Miśkiewicz, B. Chojnacki, and J. Markiewicz, “Comparison of Different Omnidirectional Sound Sources with the Validation of Coupled Speakers as a Measurement Source for Room Acoustics,” *Applied Sciences*, vol. 13, no. 24, art. 13058, Dec. 2023. doi: 10.3390/app132413058.
D. Ibarra-Zárate, R. Ledesma, and E. López, “Design and Construction of an Omnidirectional Sound Source with Inverse Filtering Approach for Optimization,” *HardwareX*, vol. 4, art. e00033, Jun. 2018. doi: 10.1016/j.ohx.2018.e00033.
Siemens AG, "SGT-100 Industrial Gas Turbine," 2024. [Online]. Available: https://www.siemens-energy.com/global/en/offerings/power-generation/gas-turbines/sgt-100.html
Digi International Inc., "Xbee Wireless Communication Modules," 2024. [Online]. Available: https://www.digi.com/xbee
Microsoft Azure, "Cloud-based Applications for IoT Monitoring," 2024. [Online]. Available: https://azure.microsoft.com/en-us/services/iot-hub/
L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.
Md. N. Pervez et al., “The Advancement in Membrane Bioreactor (MBR) Technology toward Sustainable Industrial Wastewater Management,” Membranes, vol. 13, no. 2, pp. 1-16, 2023. [Online]. Available: https://www.mdpi.com/2077-0375/13/2/181.
Microsoft, “Processes for Membrane Reactors in Hydrogen Production,” Processes, vol. 8, no. 1239, pp. 1-39, 2020. [Online]. Available: https://mdpi-res.com/processes-765484.pdf.
G. Buitrón and J. Ortiz, “Critical review on sustainable bioreactors for wastewater treatment and water reuse,” Sustainable Water Resources Management, vol. 7, no. 4, pp. 1-12, 2021. [Online]. Available: https://link.springer.com/article/10.1007/s11356-021-09135-2.
N. M. Papadakis and G. E. Stavroulakis, “Low‑Cost Omnidirectional Sound Source Utilizing a Common Directional Loudspeaker for Impulse Response Measurements,” *Applied Sciences*, vol. 8, no. 9, art. 1703, Sep. 2018. doi: 10.3390/app8091703.
B. Chojnacki, M. Brzóska, and J. A. Fijałkowska, “Comparison of Different Omnidirectional Sound Sources with the Validation of Coupled Speakers as a Measurement Source for Room Acoustics,” *Applied Sciences*, vol. 13, no. 24, art. 13058, Dec. 2023. doi: 10.3390/app132413058.
A. Arregui, “Impulse source versus dodecahedral loudspeaker for measuring parameters derived from the impulse response in room acoustics,” *Proc.*, 2012.
“Larson Davis BAS001 Omnidirectional Sound Source,” Larson Davis tech. manual, ca. 2021.
“An analytical model for a dodecahedron loudspeaker applied to the design of omni‑directional loudspeaker arrays,” *Applied Acoustics*, vol. 85, pp. 161–171, 2014. doi: 10.1016/j.apacoust.2014.01.005.
“Review of Acoustic Sources Alternatives to a Dodecahedron Speaker,” *Applied Sciences*, vol. 9, no. 18, art. 3705, Sep. 2019. doi: 10.3390/app9183705
“Design and Construction of an Omnidirectional Acoustic Source,” Revista Visión & Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá, Jun. 2025.
ISO 3382‑1:2009, *Acoustics – Measurement of room acoustic parameters – Part 1: Performance spaces*, ISO, Geneva, 2009.
ASTM E2235‑04, *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*, ASTM Int., 2004.
A. Farina, “Simultaneous measurement of impulse response and distortion with a swept‑sine technique,” in *AES Convention*, 2000.
S. Houterman, *Design and Implementation of an Omnidirectional Acoustic Source*, M.S. thesis, Delft University of Technology, 2004.
M. Kuster and D. De Bree, “A new method to determine the frequency response of sound sources using a 3D sound intensity probe,” *Acta Acustica united with Acustica*, vol. 92, no. 1, pp. 1–9, 2006.
R. Thoma and R. Luebben, “Design of a lightweight dodecahedron loudspeaker for measuring room impulse responses,” *Acta Acustica united with Acustica*, vol. 100, no. 2, pp. 358–361, 2014.
R. Pelzer, J. Lokki, and T. Savioja, “Measurement and modeling of the radiation of a dodecahedron loudspeaker,” *J. Acoust. Soc. Am.*, vol. 132, no. 3, pp. 1454–1461, 2012.
J. Merimaa and V. Pulkki, “Spatial impulse response rendering I: Analysis and synthesis,” *J. Audio Eng. Soc.*, vol. 53, no. 12, pp. 1115–1127, 2005.
C. Sayin, O. Kirkici, and T. Pratt, “Design and implementation of a directional parametric array loudspeaker system,” *IEEE Trans. Audio Speech Lang. Process., vol. 15, no. 4, pp. 1339–1347, 2007.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
.png)
atribución- no comercial 4.0 International




.jpg)





