DOI:
https://doi.org/10.14483/22484728.265Publicado:
2010-12-12Número:
Vol. 4 Núm. 2 (2010)Sección:
Visión InvestigadoraAnálogo estocástico del modelo Lotka-Volterra
Stochastic analog Lotka-Volterra model
Palabras clave:
population dynamics, Allee´s effect, LotkaVolterra model, system of differential equations, Itô formula, stochastic differential equations (en).Palabras clave:
dinámica poblacional, efecto Allee, modelo Lotka-Volterra, sistema de ecuaciones diferenciales, fórmula de Itô, ecuaciones diferenciales estocásticas (es).Descargas
Resumen (es)
La biomatemática o biología matemática es el estudio de fenómenos biológicos mediante herramientas matemáticas de diversa complejidad. Para modelarlos y analizarlos se usan ecuaciones diferenciales ordinarias, ecuaciones diferenciales parciales y/o ecuaciones diferenciales estocásticas. En este tópico interesa investigar la evolución de las especies y la relación con su ambiente (depredación, competencia, presencia y calidad del alimento, simbiosis y mutualismo, etc.), para predecir la evolución futura de los ecosistemas, sometidos a ciertas condiciones, e introducir técnicas de control en estos. En este artículo nos enfocaremos en presentar la versión determinista y estocástica de una variante del modelo Lotka-Volterra depredadorpresa para dos poblaciones, consistente en el sistema de ecuaciones diferenciales simultáneas, donde x e y representan el número de presas y predadores, respectivamente, con A, B, C, D constantes positivas que reflejan las condiciones de crecimiento de las especies y sus interacciones. El estudio de estos temas resulta ser de importancia en áreas como: el manejo de recursos renovables, la evolución de variedades resistentes a pesticidas, los fenómenos de sustitución tecnológica, el cambio organizativo o el aprendizaje organizativo.
Resumen (en)
The Biomathematics or Mathematics Biology is the study of biological phenomena using mathematical tools of varying complexity. For modeling and analyzing are ordinary differential equations, partial differential equations and / or stochastic differential equations. In this area, interested in investigating the evolution of species and the relationship with their environment (predation, competition, presence and quality of food, symbiosis and mutualism, etc.), To predict the future evolution of the ecosystems under certain conditions, introduce techniques to control them. In this article, we focus on the present version of a variant the model deterministic and stochastic LotkaVolterra predator-prey, two populations, consisting of the simultaneous differential equations system, where x and y represent the number of prey and predators, respectively, with A, B, C, D positive constants, which reflect the growing conditions of species and their interactions. The study of these issues appears to be of great importance in areas such as renewable resource management, development of varieties resistant to pesticides, technology substitution phenomena, organizational change or organizational learning.
Referencias
A. El-Nahhas, Analytic Approximations for Volterra Population Equation, Helwan, Egypt: Department of Mathematics, Helwan Faculty of Science, Pakistan Academic Science, 2007.
O.P. Aguirre, Estudio de un modelo estocástico depredador-presa con
efecto Allee. Valparaíso, España: Universidad Técnica Federico Santa María, 2008.
D.J. Higham, "An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations", consultado en diciembre de 2009 en http://www.im.pwr.wroc.pl/misiorek/dhigham.pdf
E. González-Olivares et al., "Modelling the Allee Effect: Are the Different Mathematical Forms Proposed equivalents?", Proceedings of International Symposium on Mathematical and Computational Biology, E-papers. Río de Janeiro: Servicos Editoriais, 2007.
E. González-Olivares et al., "Metastable Dynamics by Considering Strong
and Weak Allee Effect on Prey in Rosenzweig-McArthur Predator-Prey Model" [submitted to Mathematical Biosciences, 2006].
D. Hadjiavgousti et al., "Allee Effect in a Prey-Predator System Department
of Physics", University of Thessaloniki, 54124, Greece, Consultado en www. sciencedirect.com, 2006.
I. Karatzas et al., Brownian Motion and Stochastic Calculus. Springer-Verlag, 1988.
A. Maiti et al., "Deterministic and Stochastic Analysis of a Ratio-Dependent
Predator-Prey System with Delay", Nonlinear Analysis: Modelling and Control, India, vol. 12, no. 3, pp. 383-98, 2007.
F. Marín, Notas de clase. Procesos estocásticos II. Medellín: EAFIT, 2009.
B. Øksendal, Stochastic. Diferential Equations An Introduction with Applications, Fifth Edition. New York: Corrected Printing Springer-Verlag Heidelberg, 2000.
E. Raffo et al., "Aplicaciones computacionales de las ecuaciones diferenciales estocásticas", consultado en diciembre de 2009 en http://www.scielo.org.pe/pdf/id/v91n/a09v9n1.pdf, 2006.
Shu-Rong Zhou et al., The Stability of PredatorPrey Systems Subject to the
Allee Effects. China: Lanzhou University, available online, 2004.
S. Asmussen et al., Stochastic Simulation: Algorithms and Analysis. New York: Springer Verlag, 2007 [versión en PDF].
U. Picchini, "SDE Toolbox: Simulation and Estimation of Stochastic Differential Equations with Matlab", consultado en: http://sdetoolbox.sourceforge.net, 2009.
G. Van Voorn et al., "Heteroclinic Orbits Indicate Overexploitation in Predator-Prey Systems with a Strong Allee Effect", available online, 2007.
G. Wang et al., "The Competitive Dynamics of Populations Subject to an Allee Effect", consultado en www.elsevier.com:locate:ecolmodel, 1999.
E. Buckwar et al., Multi-step Methods for SDEs and their Applications to Problems with Small Noise", tech. rep., Humboldt-Universitat zu Berlin, 2004.
K. Burrage et al., "Adaptive Stepsize Based on Control Theory for Stochas tic Differential Equations". J. Comput. Appl. Math., no. 170, 2004.
P.E. Kloeden y E. Platen, Numerical Solution of Stochastic Differential Equations. Springer-Verlag, vol. 23 of Applications of Mathematics, 1992.
G. Marsaglia y W.W. Tsang, "The Ziggurat Method for Generating Random
Variables". Journal of Statistical Software, 2000.
G. Maruyama, "Continuous Markov Processes and Stochastic Equations".
Rend. Circ. Mat., Palermo, vol. 4, no. 2, 1955.
G. Milstein, "Approximate integration of Stochastic Differential Equations".
Theory Probab. Appl., no. 19, 1974.
H. C. Ottinger. Stochastic Processes in Polymeric Uids. Tools and examples for developing simulation algorithms Berlín: Springer-Verlag, 1996.
M.J.D. Powell, "A FORTRAN Subroutine for Solving Systems of Nonlinear Algebraic Equations", en Numerical Methods for Nonlinear Algebraic Equations (Proc. Conf., Univ. Essex, Colchester, 1969). London: Gordon and
Breach, 1970.
T. Ryden y M. Wiktorsson, "On the Simulation of Iterative Ito Integrals", Stochastic Proceses and their Applications 91, 2001.
L. Shampine et al., "The MATLAB ODE suite". SIAM J. Sci. Comput., no. 18, 1997.
M. Wiktorsson, "Joint Characteristic Function and Simultaneous
Simula tion of Iterated Ito Integrals for Multiple Independent Brownian Motions", Ann. Appl. Probab., no. 11, 2001.
L. Blanco y M. Muñoz, Análisis estocástico. Colombia: Unibiblos Universidad Nacional, 2003.
C. Brassil, "Mean Time to Extinction of a Metapopulation with an Allee Effect". Ecological Modelling, no. 143, pp. 9-16, 2001, consultado en http:// hpsrv10.uco.es/windows/filemgr/down-oad/stella/articulos/Brasil%202001.pdf
G.Q. CAI et al., "Stochastic Analysis of Predator-Prey Type Ecosystems". Ecological Complexity, no., 4, pp. 242-49, 2007.
H. Y. Fujita et al., "The Stochastic Equation of Predator-Prey Population Dynamics". Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, vol. 5, no. 8, pp. 789-804, 2002.
R. Rudnicki, "Long-Time Behavior of a Stochastic Prey-Predator Model". Stochastic Processes and their Applications, no.108, pp. 93-107, 2003.
R. Rudnicki et al., "Influence of Stochastic Perturbation on Predator-Prey Systems". Mathematical Biosciences, vol. 206, no. 1, pp. 108-19, 2007.