Optimizacion basada en un modelo de particulas con comportamiento de vorticidad

Optimization based on a model of particles with vorticity behavior

  • Jorge I Sofrony E. Universidad Nacional de Colombia (Colombia).
  • Helbert E Espitia C Universidad Distrital Francisco José de Caldas
Palabras clave: optimization, particle swarm, vorticity (en_US)
Palabras clave: Optimización, enjambres de partículas, vorticidad (es_ES)

Resumen (es_ES)

En la naturaleza se pueden observar diferentes comportamientos en enjambres, los cuales pueden ser fuentes de inspiración en la propuesta de algoritmos de optimización. En particular, el comportamiento que es de atención en este trabajo consiste en el movimiento circular de partículas, con la formación de un vórtice, ya que se considera que esta estrategia de locomoción que emplean algunos seres vivos para buscar alimento y evadir obstáculos puede ser útil en procesos de optimización. Para el desarrollo del algoritmo de optimización se toma como referencia un modelo que permite describir el comportamiento de vorticidad. Considerando este modelo se propone la estrategia de optimización. Para mostrar el concepto se emplea una función de prueba en dos dimensiones y se varían los parámetros del modelo, con el fin de observar las características del proceso de búsqueda propuesto

Resumen (en_US)

In nature we can see different behaviors for swarms which can be sources of inspiration to perform the proposal of optimization algorithms. In particular, the behavior observed in this paper is the circular motion of particles with the formation of a vortex. Due to this, the strategy of locomotion may be useful in optimization processes. For the development of the optimization algorithm is taken a model which describing the behavior of vorticity. Considering this model the optimization strategy is proposed. To show the concept is used a test function in two dimensions. Additionally were considered different values of parameters to observe the characteristics of the proposed search process.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jorge I Sofrony E., Universidad Nacional de Colombia (Colombia).
Ingeniero eléctrico, MSc. en Sistemas de Control, Ph.D. en Sistemas de Control, Universidad Nacional de Colombia (Colombia).
Helbert E Espitia C, Universidad Distrital Francisco José de Caldas
Ingeniero electrónico, ingeniero mecatrónico, especialista en Telecomunicaciones Móviles, magíster en Ingeniería Industrial, magíster en Ingeniería Mecánica, Universidad Distrital “Francisco José de Caldas” (Colombia)

Referencias

P. Kevin, “Biomimicry of bacterian foragin for distributed optimization and control”, ieee Control Systems magazine, 2002.

B. Mauro, P. Paola y D. Marco, “On the invariance of ant colony optimization”, ieee Transactions on evolutionary computation, vol. 11, no. 6, 2007.

D. Marco y G. Luca, Ant algorithms for discrete optimization, Massachusetts Institute of Technology, Artificial Life 5, pp. 137-72, 1999.

D. Marco, B. Mauro y S. Thomas, “Ant colony optimization. Artificial ants as a computational intelligence technique”, IEEE Computational Intelligence Magazine, 2006.

Z. Aaron, S. Angus, M. Holger y N. John, “Parametric study for an ant algorithm applied water distribution system optimization”, ieee Transactions on Evolutionary Computation, vol. 9, no. 2, 2005.

K. Dervis, An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, 2005.

T. Sarita, M. John, J. Chahl, H. Butler y Z. Steve, Bees: exploring Mars with bioinspired technologies, ieee computer Society, 2004.

A. Russell y C. Michael, “Hans J. Bremermann, A pioneer in mathematical biology”, BioSystems, vol. 34, no. 1, pp. 1-10, 1995.

R. Eberhart y J. Kennedy, “Particle swarm optimization”, ieee Proceedings Neural Networks, 1995.

C. Leandro, A quantum particle swarm optimizer with chaotic mutation operator, Elsevier Chaos Solitons and Fractals, 2006.

C. Leandro y C. Viviana, Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects, Elsevier Energy Conversion and Management, 2008.

S. Davoud y M. Ellips, “Particle swarm optimization methods, taxonomy and applications”, International Journal of Computer Theory and Engineering, vol. 1, no. 5, 2009.

Y. Xin-She, “A new metaheuristic bat-inspired algorithm”, Nature Inspired Cooperative Strategies for Optimization (NICSO), 2010.

Y. Xin-She, Firefly algorithm, Lévy flights and global optimization, Londres: Springer, Research and Development in Intelligent Systems XXVI, 2009.

M. Antonio y S. Onur, “Monkey search: a novel metaheuristic search for global optimization”, aip Conference Proceedings, Data mining systems analysis and optimization in biomedicine, 2007.

A. Kaveh y S. Talatahari, “A novel heuristic optimization

method: charged system search”, Acta Mechanica, vol. 213, no. 3-4, pp. 267-89, 2010.

Y. Xin-She, “Harmony search as a metaheuristic algorithm”, Springer Berlin, Music-Inspired Harmony Search Algorithm, 2009.

S. Hamed, “Problem solving by intelligent water drops”, ieee Congress on Evolutionary Computation, 2007.

D. J. T. Sumpter, The principles of collective animal behaviour, Philosophical Transactions of the Royal Society B, 2006.

V. Tamás, C. András, B. Eshel, C. Inon y S. Ofer, “Novel type of phase transition in a system of self-driven particles”, Physical Review Letters, vol. 75, no. 6, 1995.

V. Tamás, “Universal patterns of collective motion from minimal models of flocking”, Second ieee International Conference on Self-Adaptive and Self-Organizing Systems, 2008.

C. Iain, K. Jens, F. Nigel y L. Simon, “Effective leadership and decision making in animal groups on themove”, Letters to Nature, vol. 433, no. 3, pp. 513-15, feb. 2005.

B. Iztok y H. Frank, “Organized flight in birds”, Animal Behaviour, 78, 2009.

Z. Hai, C. Michael, S. Guy, Z. Tao y M. Jan, “Collective behavior coordination with predictive mechanisms”, ieee Circuits and Systems Magazine, third quarter, pp. 67-85, 2008.

B. Howard, Random walks in biology, Princeton University Press, 1983.

Ç. Yanus, Mecánica de fluidos, McGraw-Hill, 2003.

L. Herbert, R. Wouter-Jan y C. Inon, “Self-organization in systems of self-propelled particles”, Physical Review E 63, 2000

M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi y L. S. Chayes, “Self-propelled particles with soft-core interactions: patterns, stability, and collapsel”, Physical Review Letters, PRL 96, 2006.

E. Werner y E. Udo, “Nonequilibrium statistical mechanics of swarms of driven particles”, Physica A: Statistical Mechanics and its Applications, vol. 314, 2002.

E. Udo, E. Werner y M. Alexander, “Noise-induced transition from translational to rotational motion of swarms”, Physical Review E, no. 71, p. 051904, 2005.

A. Wahid y M. Colin, “Wall following to escape local minima for swarms of agents using internal states and emergent behavior”, International Conference of Computational Intelligence and Intelligent Systems icciis, 2008.

E. Helbert y S. Jorge, “Path planning of mobile robots using potential fields and swarms of Brownian particles”, ieee Congress on Evolutionary Computation (cec), pp. 123-29, 2011

E. Helbert, S. Jorge y G. Cesar, “Vortex swarm path planning algorithm”, IEEE Electronics, Robotics and Automotive Mechanics Conference (cerma), pp. 184-190, 2011.

S. Menser y J. Hereford, “A new optimization technique”, Proceedings of the ieee Digital Object Identifier Southeast Con, 2006.

E. Udo, E. Werner, S. Lutz, O. Anke y M. Frank, “Active Brownian particle and random walk theories of the motions of zooplankton: application to experiments with swarms of Daphnia”, Journal of Theoretical Biology, 9, 2008.

M. Robert y S. Frank, “Modeling vortex swarming in Daphnia”, Bulletin of Mathematical Biology, vol. 69, pp. 539-62, 2007.

E. Werner, Nonequilibrium statistical mechanics of swarms of driven particles, Elsevier Physica, 2002

Cómo citar
Sofrony E., J. I., & Espitia C, H. E. (2014). Optimizacion basada en un modelo de particulas con comportamiento de vorticidad. Visión electrónica, 7(2), 6-18. https://doi.org/10.14483/22484728.5504
Publicado: 2014-04-09
Sección
Visión Investigadora