Finite Element Analysis Using a Cosserat Linear Elastic Continuum

Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat

  • Alfonso Mariano Ramos-Cañón Pontificia Universidad Javeriana
  • Luis Felipe Prada-Sarmiento Pontificia Universidad Javeriana
  • Carlos Alberto Vega-Posada Universidad de Antioquia
Palabras clave: Cosserat continuum, finite element method. (en_US)
Palabras clave: Continuo de cosserat, elementos finitos. (es_ES)

Resumen (en_US)

Contexto: Los resultados experimentales en materiales granulares muestran que el comportamiento esfuerzo deformación tiene dependencia con la escala de análisis, sin embargo, debido a las supocisiones intrínsecas que tiene la mecánica del medio continuo, los análisis de elementos finitos basados en el continuo continuo de Boltzmann no permite tener en cuenta longitudes características en su formulación que refleje la escala.

Método: En este trabajo se presenta la formulación especializada de los elementos finitos para un problema de deformación plana para el continuo de Cosserat. Se presentan los grados de libertad de un elemento finito cuadrilatero y se deduce el operador diferencial para obtener el vector de deformación, su función de forma, la matriz de interpolación, la matriz de rigidez y el vector de fuerza nodal. Finalmente se implementa el continuo de cosserat con el elemento descrito en un programa de elementos finitos codificado por los autores.  El programa se ejecuta para resolver el problema de esfuerzos y deformaciones en una capa homogenea de material con comportamiento lineal elástico.

Resultados: Se obtiene las diferencias entre los componentes de esfuerzos y deformaciones de corte entre el continuo convencional y el de Cosserat junto con la aparición de momentos  a nivel de punto de Gauss.

Conclusiones: La deducción e implementación del continuo de Cosserat permite un análisis de elementos finitos alternativo al del continuo Convencional con la posibilidad de introducir una longitud característica en su formulación para tener en cuenta los efectos de escala y rotaciones que se observan en materiales granulares.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Alfonso Mariano Ramos-Cañón, Pontificia Universidad Javeriana
Ingeniero Civil, Magister en Geotecnia, Doctor en Ingeniería. Profesor asociado Facultad de Ingeniería. Pontificia Universidad Javeriana
Luis Felipe Prada-Sarmiento, Pontificia Universidad Javeriana
Ingeniero Civil, Magister en Ingeniería, Doctor en Ingeniería. Profesor asistente. Facultad de Ingeniería. Pontificia Universidad Javeriana
Carlos Alberto Vega-Posada, Universidad de Antioquia

Ingeniero Civil, Master of Science, Ph.D. Profesor asistente. Facultad de Ingeniería, Universidad de Antioquia.

Referencias

Arévalo, G.; Ramos-Cañón, A.; Prada, L. (2014). Análisis de confiabilidad en un modelo de descarga de silos de almacenamiento mediante el método de elementos discretos (DEM). Obras y proyectos 15, pp 21-30.

Azadeh, R.; Curran, J. (2008). Application of Cosserat Continuum approach in the finite element shear strength reduction analysis of jointed rock slopes. The 12th international conference of international association for computer methods and advances in geomechanics. Goa, India.

Bareither, C.; Benson, C.; Edil, T. (2008). Reproducibility of Direct Shear Tests Conducted on Granular Backfill Materials. Geotechnical Testing Journal, 31(1), pp. 1 -11.

Bazant, Z.; Xiang, Y. (1997). Size Effect in Compression Fracture: Splitting Crack Band Propagation. Journal of Engineering Mechanics. ASCE 123 (2), 162 - 172.

Belytschko, T.; Liu, W.; Moran, B. (2006). Nonlinear finite elements for continua and structures. John Wiley & Sons, Ltd. England.

Cerato, A.; Lutenegger, A. J. (2006). Specimen Size and Scale Effects of Direct Shear Box Test of Sands. Geotechnical Testing Journal, 29(6).

Correa, C.; Maldonado, M.; Prada, L.; Ramos, A. (2015). Aplicabilidad de la energía cinética en el inicio de la inestabilidad de materiales granulares en un tambor rotador mediante la técnica PIV. Revista ingeniería y región, 13 (1).pp 9-18.

Cosserat, E.; Cosserat, F. (1909). Theorie des Corps Deformables. Hermann, Paris.

Eringen, A. (1968). Fracture, volume II – MathematicalFundamentals, Chapter Theory of Micropolar Elasticity. pp. 621-729. Academic Press. London.

Gao, J.; Haixue, Y.; Weibing, Z. (2000). Characteristic Study of Interface Between Soil and Concrete by Using Larger Size Single Shear Apparatus and Numerical Analysis. China Civil Engineering Journal, 33(4), pp. 42-46.

Neff, P.; Chelminski, K.; Muller, W.; Wieners, C.; (2007) A numerical solution method for an infinitesimal elasto-plastic –Cosserat model. Mathematical models and methods in applied sciences. 17 (8), pp 1211-1239.

Orlando, A.; Hanes, D.; Shen, H. (2009). Scaling Effects in Direct Shear Test. Powders and Grains 2009 . Proccedings of the 6th International Conference on Micromechanics of Granular Media. AIP Conference Proceedings Col 1145 Issue 1.

Palmeira, E.; Milligan, G. (1989). Scale Effects in Direct Shear Test on Sand. Proceedings of the 12th InternationalConference on Soil Mechanics and Foundation Engineering. 1(1), pp. 739-742.

Prada, L.; Ramos, A.; Solaque, B.; Caicedo, B. (2011). Confiabilidad aplicada al diseño geotécnico de un muro de contención. Revista Obras y Proyectos, 9, pp 49-58. http://dx.doi.org/10.4067/S0718-28132011000100006

Ramos-Cañón, A.; Prada, L. (2015). Desempeño del continuo de Cosserat para tener en cuenta efectos de escala en un ensayo de corte directo. Revista EIA, 12 (23), pp 51-59.

Riahi, A.; Curran, J. (2009). Full finite element Cosserat formulation with application in layered structures. Applied mathematical modelling, 33 (8), pp 3450-3464

Riahi, A.; Curran, J. (2010). Comparison of the Cosserat Continuum approach with finite element interface models in a simulation of layered materials. Transactions A: Civil Engineering, 17 (1), pp. 39-52.

Sharbati, E.; Naghdabadi, R. (2006). Computational aspects of the Cosserat finite element analysis of localization phenomena. Computational material science, 38 (2), pp 303-315.

Tejchman, J. (2007). FE Analysis of contract shear zones in loose granular materials. Granular Matter, 9:pp49-67.

Vega-Posada, C.; Zapata-Medina, D.; Ramos-Cañón, A. (2016). Blast densification: A proposed methodology to quantify the amount of densification required to prevent liquefaction and flow in sandy soils. Revista Facultad de Ingeniería Universidad de Antioquia, 80 , pp 4-8

Wu, P.; Matsushima, K.; Tatsuoka F. (2008). Effects of Specimen Size and Some other Factors on the Strength and Deformation of Granular Soil in Direct Shear Tests. Geotechnical Testing Journal, 31 (1), pp. 1-20.

Zhou, Q.; Helenbrook, B.; Shen, H. (2009). A Computational Study of the Micromechanics Under Pre and Post-Failure in a 2-D Direct Shear Test, Chinese Science Bulletin. Disponible en Doi:10.1007/s11434-009-0516-5.

Cómo citar
Ramos-Cañón, A. M., Prada-Sarmiento, L. F., & Vega-Posada, C. A. (2017). Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat. Tecnura, 20(50), 43-54. https://doi.org/10.14483/22487638.11559
Publicado: 2017-02-01
Sección
Investigación

Artículos más leídos del mismo autor/a