Efecto del gas en la velocidad de onda de corte de suelos arenosos densificados con explosivos

Effect of gas on shear wave velocity of sandy soils densified with explosives

  • Carlos Alberto Vega-Posada Universidad de Antioquia
  • Alfonso Mariano Ramos-Cañón Pontificia Universidad Javeriana
  • Edwin Fabián García Aristizábal Pontificia Universidad Javeriana
Palabras clave: Loose sands, blast densification, liquefaction, soil improvement, shear wave velocity (en_US)
Palabras clave: arenas sueltas, densificación con explosivos, licuación, mejoramiento de suelos, velocidad de onda de corte (es_ES)

Resumen (es_ES)

Contexto: Los ensayos de velocidad de onda de corte (Vs), son comúnmente utilizados para estimar el incremento en resistencia de suelos densificados con explosivos. En algunos casos históricos los ensayos de Vs realizados después del proceso de mejoramiento de suelo no muestran un incremento significativo en la resistencia del suelo, aun cuando la superficie del terreno se asienta más de 0,50 m. Se cree que esta respuesta se debe a la presencia de gas en la masa de suelo.

Método: En este trabajo se presentan los resultados de ensayos triaxiales monotónicos realizados en muestras de suelos arenosos gaseosos medianamente densos, para evaluar el efecto del gas ocluido en la respuesta a la velocidad de onda de corte en arenas densificadas con explosivos. Muestras de arena fueron recolectadas de un depósito de arena suelta localizado in Carolina del Sur, Estados Unidos, y el cual fue densificado in situ con explosivos. Las muestras fueron consolidadas a las condiciones de esfuerzo efectivo in situ, las cuales se consideran representativas de las condiciones de esfuerzo en el momento de realizar la densificación con explosivos.

Resultados: Los resultados de los ensayos triaxiales, realizados bajo condiciones no-drenadas globales, mostraron que, independientemente de la densidad de la muestra, el gas hace que los valores de velocidad de onda de corte obtenidos para las arenas gaseosas se aproximen a los valores de velocidad de onda de corte obtenidos en las muestras saturadas ensayadas bajo condiciones drenadas. Además, este comportamiento tiende a ser más pronunciado a medida que el suelo es más denso.

Conclusiones: Esta respuesta podría ofrecer algunas luces sobre porqué la velocidad de corte no se incrementa significantemente en suelos densificados con explosivos aun cuando la densidad se incrementa considerablemente. 

Resumen (en_US)

Context: Shear wave velocity tests (Vs) are commonly used to estimate the increase in resistance of explosive densified soils. In some historical cases, Vs tests performed after the soil improvement process do not show a significant increase in soil resistance, even though the soil surface sits more than 0.50 m. It is believed that this response is due to the presence of gas on the soil mass.

Method: This paper presents the results of monotonic triaxial tests performed on samples of dense gaseous sandy soils to evaluate the effect of occluded gas on the response to the shear wave velocity in densified sands with explosives. For sand sampling, it was collected from a loose sand deposit located in South Carolina, USA. These samples were densified in-situ with explosives, and consolidated to the in-situ effective stress conditions, which are considered representative in the conditions of effort at the moment of the densification with explosives.

Results: Triaxial tests were performed under global non-drained conditions. The results of these tests show that gas causes the shear wave velocity values obtained for the gaseous sands to approximate the shear wave velocity values obtained in the saturated samples tested under drained conditions. In addition, behavior tends to be more pronounced as the soil is denser.

Conclusions: These response may offer some insights as to why the shear wave velocity does not increase significantly in densified soils with explosives, even though the density increases considerably.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Carlos Alberto Vega-Posada, Universidad de Antioquia
Ingeniero civil, doctor en Ingeniería Civil. Profesor asistente, Grupo de Investigación en Infraestructura (GII), Escuela Ambiental, Universidad de Antioquia, Medellín
Alfonso Mariano Ramos-Cañón, Pontificia Universidad Javeriana
Ingeniero civil, doctor en Ingeniería. Profesor asociado, Instituto Geofísico, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá
Edwin Fabián García Aristizábal, Pontificia Universidad Javeriana
Ingeniero civil, doctor en Ingeniería. Profesor asociado, Instituto Geofísico, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá

Referencias

Amaratunga, A. y Grozic, J.L.H. (2009). On the undrained unloading behaviour of gassy sands. Canadian Geotechnical Journal, 46, 1267-1276.

Been, K.; Jefferies, M.G. y Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365-381.

Castro, G.; Seed, R.B.; Keller, T.O. y Seed, H.B. (1992). Steady-state strength analysis of lower San Fernando Dam slide. Journal of Geotechnical Engineering, 118(3), 406-427.

Chaney, R. y Mulilis, J.P. (1978). Suggested method for soil specimen remolding by wet-raining. Geotechnical Testing Journal, 1(2), 107-108.

Chern, J.C. (1981). Effect of static shear on resistance to liquefaction. Tesis M.A.Sc. Vancouver, Canadá: The University of British Columbia.

Chern, J.C. (1985). Undrained response of saturated sands with emphasis on liquefaction and cyclic mobility. Tesis de doctorado. Vancouver, Canadá: The University of British Columbia.

Finno, R.J.: Gallant, A.P. y Sabatini, P.J. (2016). Evaluating Ground Improvement after Blast Densification: Performance at the Oakridge Landfill. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 10.1061/(ASCE)GT.1943-5606.0001365, 04015054.

Ghionna, V. y Porcino, D. (2006). Liquefaction Resistance of Undisturbed and Reconstituted Samples of a Natural Coarse Sand from Undrained Cyclic Triaxial Tests. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 194-202. DOI:10.1061/(ASCE)1090-0241(2006)132:2(194)

Gohl, W.B.; Jefferies, M.G.; Howie, J.A. y Diggle, D. (2000). Explosive compaction: design, implementation and effectiveness. Géotechnique, 50(6), 657-665.

Grozic, J.L.H.; Imam, S.M.R.; Robertson, P.K. y Morgenstern, N.R. (2005). Constitutive modeling of gassy sand behaviour. Canadian Geotechnical Journal, 42(3), 812-829.

Hardin, B.O. y Black, W.L. (1968). Vibration modulus of normally consolidated clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 353-370.

Hardin, B.O. y Richart, F.E.J. (1963). Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 33-65.

Jung, Y.H., Cho, W. y Finno, R.J. (2007). Defining yield from bender element measurements in triaxial stress probe experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 841-849.

Knai, H.B. (2011). Measuring the effect of occluded gas bubbles on stress-strain response of a loose to medium sand. Tesis de maestría. Evanston, IL: Northwestern University.

Kokusho, T.; Yoshida, Y. y Esashi, Y. (1982). Dynamic properties of soft clay for wide strain range. Soils Found., 22(4), 1-18.

Ladd, R.S. (1978). Preparing test speciments using undercompaction. Geotech Test J, GTJODJ., 1(1), 16-23.

Marcuson, W.F. y Wahls, H.E. (1972). Time effects on dynamicshear modulus of clays. Journal of the Soil Mechanics and Foundations Division, 98(12), 1359-1373.

Nageswaran, S. (1983). Effect of gas bubbles on the sea bed behaviour. Tesis de doctorado. Oxford University.

Narsilio, G.A. (2006). Spatial variability and terminal density: Implication in soil behavior. Tesis de doctorado. Atlanta, GA: Georgia Institute of Technology.

Narsilio, G.A.; Santamarina, J.C.; Hebeler, T. y Bachus, R. (2009). Blast Densification: Multi-Instrumented Case History. Journal of Geotechnical and Geoenvironmental Engineering, 135(6), 723-734.

Okamura, M.; Ishihara, M. y Tamura, K. (2006). Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 258-264.

Okamura, M.; Takebayashi, M.; Nishida, K.; Fujii, N.; Jinguji, M.; Imasato, T.; ...; Nakagawa, E. (2011). In-Situ Desaturation Test by Air Injection and Its Evaluation through Field Monitoring and Multiphase Flow Simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643-652. DOI: 10.1061/(asce)gt.1943-5606.0000483

Poulos, S.J.; Castro, G. y France, J.W. (1985). Liquefaction evaluation procedure. Journal of Geotechnical Engineering, 111(6), 772-792.

Ramos C., A.M. (2015). Influence of the void ratio and the confining on the static liquefaction in slopes in changi sand. Revista Tecnura, 19(43), 63-73.

Ramos C., A.M.; Felipe, P.-S.L. y Vega-Posada, C.A. (2016). Análisis de elementos finitos con un continuo elástico lineal tipo Cosserat. Revista Tecnura, 20(50), 43-54.

Shibata, T. y Soelarno, D.S. (1978). Stress–strain characteristics of clays under cyclic loading. Paper presented at the Proc., Japanese Society of Civil Engineering.

Shibuya, S.; Hwang, S.C. y Mitachi, T. (1997). Elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique, 47(3), 593-601.

Shibuya, S. y Tanaka, H. (1996). Estimate of elastic shear modulus in Holocene soil deposits. Journal of the Japanese Geotechnical Society : soils and foundation, 36(4), 45-55.

Tomita, Y., Shima, A., & Ohno, T. (1984). Collapse of multiple gas bubbles by a shock wave and induced impulsive pressure. Journal of Applied Physics, 56(1), 125-131.

Vaid, Y.P y Sivathayalan, S. (2000). Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 37(3), 592–606.

Vaid, Y.P.; Sivathayalan, S. y Stedman, D. (1999). Influence of specimen-reconstituting method on the undrained response of sand. Geotechnical Testing Journal, 22(3), 187-195.

Vega-Posada, C.A. (2012). Evaluation of liquefaction susceptibility of clean sands after blast densification. Tesis de doctorado. Evanston, IL: Northwestern Univ.

Vega-Posada, C.A.; Finno, R.J. y Zapata-Medina, D.G. (2014). Effect of Gas on the Mechanical Behavior of Medium-Dense Sands. Journal of Geotechnical and Geoenvironmental Engineering, 140(11), http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001163, 04014063. doi:10.1061/(ASCE)GT.1943-5606.0001163

Vega-Posada, C.A.; Zapata-Medina, D.G. y García-Aristázabal, E.F. (2014). Ground surface settlement of loose sands densified with explosives. Revista Facultad de Ingeniería, (70), 9-17.

Verdugo, R. e Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundation, 36(2), 81-91.

Yegian, M.K.; Eseller-Bayat, E.; Alshawabkeh, A. y Ali, S. (2007). Induced-Partial Saturation for Liquefaction Mitigation: Experimental Investigation. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 372-380. doi: 10.1061/(asce)1090-0241(2007)133:4(372)

Cómo citar
Vega-Posada, C. A., Ramos-Cañón, A. M., & García Aristizábal, E. F. (2017). Efecto del gas en la velocidad de onda de corte de suelos arenosos densificados con explosivos. Tecnura, 21(51), 67-80. https://doi.org/10.14483/udistrital.jour.tecnura.2017.1.a05
Publicado: 2017-01-01
Sección
Investigación

Artículos más leídos del mismo autor/a