Distribución de la infraestructura verde y su capacidad de regulación térmica en Bogotá, Colombia

Distribution of the green infrastructure and its thermal regulation capacity in Bogotá, Colombia

Palabras clave: Tree canopy cover, Normalized difference vegetation index, Urban heat island, Environmental inequity, Urban parks, Urban ecosystem services (en_US)
Palabras clave: Cobertura arbórea, Índice de vegetación de diferencia normalizada, Isla de calor, Inequidad ambiental, Parques urbanos, Servicios ecosistémicos urbanos (es_ES)

Resumen (es_ES)

Las ciudades presentan características ambientales particulares que dan lugar a fenómenos como las islas de calor. Aunque las coberturas vegetales son fundamentales en la mitigación de estas condiciones adversas, se ha observado que su distribución no es equitativa. Analizar esta distribución y la oferta de servicios ecosistémicos es importante para la planificación de las ciudades. Por tal razón, se analizó la distribución de la capacidad de regulación térmica de las coberturas vegetales públicas de la ciudad de Bogotá, usando la cobertura arbórea y el verdor como variables proxy, mediante análisis geoestadístico y metodologías propias de los sistemas de información geográfica y la teledetección. El verdor de los parques aumentó con su tamaño y estrato socioeconómico, la cobertura arbórea incrementó en los estratos más altos. Se identificaron coldspots y hotspots de estas variables y del potencial de regulación térmica en los sectores con estratos más bajos y más altos respectivamente.

Resumen (en_US)

Cities show particular environmental characteristics that give rise to phenomena such as heat islands. Although vegetation covers are key in mitigating these adverse conditions, their distribution has been found to be inequitable. Analyzing this distribution and the supply of ecosystem services is important for the city planning . For this reason, the distribution of the thermal regulation capacity of the public vegetation covers of Bogotá city was analyzed, using tree coverage and greenness as proxy variables, through geostatistical analysis, Geographic Information Systems and remote sensing. There was an increase in the average greenness of the parks according to their size and the socioeconomic stratum where they are located, the tree coverage increased in the highest strata. Coldspots and hotspots of these variables and the thermal regulation potential were identified in the areas with the lowest and highest strata, respectively.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Aide, T. M. y Grau, H. R. (2004). Globalization, migration and Latin American ecosystems. Science, 305, 1915-1916.

https://doi.org/10.1126/science.1103179

Ángel, L., Ramírez, A. y Domínguez, E. (2010). Isla de calor y cambios espacio-temporales de la temperatura en la ciudad de Bogotá. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 34(131), 173-183.

Anselin, L., Syabri, I. y Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1), 5-22.

https://doi.org/10.1111/j.0016-7363.2005.00671.x

Ayanu, Y. Z., Conrad, C., Nauss, T., Wegmann, M. y Koellner, T. (2012). Quantifying and mapping ecosystem services supplies and demands: A review of remote sensing applications. Environmental Science & Technology, 46, 8529-8541.

https://doi.org/10.1021/es300157u

Basara, J. B., Basara, H. G., Illston, B. G. y Crawford, K. C. (2010). The impact of the urban heat island during an intense heat wave in Oklahoma City. Advances in Meteorology.

http://doi.org/10.1155/2010/230365

Bolund, P. y Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29, 293-301.

https://doi.org/10.1016/S0921-8009(99)00013-0

Bowler, D. E., Buyung-Ali, L., Knight, T. M. y Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155.

https://doi.org/10.1016/j.landurbplan.2010.05.006

Brown, M. (2012). The Bogotá Green Divide: Inequality in Street Tree Coverage Across Estratos. Recuperado de http://www.citinature.org/uploads/4/7/4/0/4740372/citinature_report_bogota_green_divide.pdf

Burkhard, B., Kroll, F., Müller, F. y Windhorst, W. (2009). Landscapes’ capacities to provide ecosystem services - a–concept for Land-Cover based assessments. Landscape online, 15, 1-22.

https://doi.org/10.3097/LO.200915

Burkhard, B., Kroll, F., Nedkov, S. y Müller, F. (2012). Mapping ecosystem service supply, demand and budgets. Ecological Indicators, 21, 17-29.

https://doi.org/10.1016/j.ecolind.2011.06.019

Celemin, J. P. (2009). Autocorrelación espacial e indicadores locales de asociación espacial. Importancia, estructura y aplicación. Revista Universitaria de Geografía, 18(1), 11-31. Recuperado de

http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-42652009000100002

Chander, G., Markham, B. L. y Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113, 893-903.

https://doi.org/10.1016/j.rse.2009.01.007

Chuvieco, E. (2016). Fundamentals of satellite remote sensing: An environmental approach. CRC press.

Cortinovis, C. y Geneletti, D. (2018). Mapping and assessing ecosystem services to support urban planning: A case study on brownfield regeneration in Trento, Italy. One Ecosystem, 3, e25477.

https://doi.org/10.3897/oneeco.3.e25477

Cristancho, C. y Triana, E. (2018). Análisis demográfico y proyecciones poblacionales de Bogotá. Bogotá: Secretaría Distrital de Planeación. Recuperado de http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0_0.pdf

Dawes, L. C., Adams, A. E., Escobedo, F. J. y Soto J. R. (2018). Socioeconomic and ecological perceptions and barriers to urban tree distribution and reforestation programs. Urban Ecosystems, 21(4), 657-671.

https://doi.org/10.1007/s11252-018-0760-z

De la Maza, C. L., Hernández, J., Brown, H., Rodríguez, M. y Escobedo, F. (2002). Vegetation diversity in the Santiago de Chile urban ecosystem. Arboricultural Journal, 126(4), 347-357.

https://doi.org/10.1080/03071375.2002.9747349

Dirpen (2006). Manual del censista y auxiliar: censo del árbol urbano de Bogotá D.C. Bogotá: Jardín Botánico de Bogotá José Celestino Mutis, Departamento Nacional de Estadística.

Egoh, B., Drakou, E. G., Dunbar, M. B., Maes, J. y Willemen, L. (2012). Indicators for Mapping Ecosystem Services: A Review. Luxemburgo: European Comission, Joint Research Centre.

Egoh, B., Reyers, B., Rouget, M., Richardson, D. M., Le Maitre, D. C. y van Jaarsveld, A. S. (2008). Mapping ecosystem services for planning and management. Agriculture, Ecosystems and Environment, 127, 135-140.

https://doi.org/10.1016/j.agee.2008.03.013

Eigenbrod, F., Armsworth, P. R., Anderson, B. J., Heinemeyer, A., Gillings, S., Roy, D.V., … y Gaston, K. J. (2010). The impact of proxy-based methods on mapping the distribution of ecosystem services. Journal of Applied Ecology, 47, 377-385.

https://doi.org/10.1111/j.1365-2664.2010.01777.x

Ellis, E. C. y Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439-447.

https://doi.org/10.1890/070062

Ernstson, H. (2013). The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landscape and Urban Planning, 109(1), 7-17.

https://doi.org/10.1016/j.landurbplan.2012.10.005

Escobedo, F. J., Clerici, N., Staudhammer, C. L. y Corzo, G. T. (2015). Socio-ecological dynamics and inequality in Bogotá, Colombia’s public urban forests and their ecosystem services. Urban Forestry and Urban Greening, 14, 1040-1053.

https://doi.org/10.1016/j.ufug.2015.09.011

Escobedo, F. J., Palmas-Perez, S., Dobbs, C., Gezan, S. y Hernández, J. (2016). Spatio-Temporal Changes in Structure for a Mediterranean Urban Forest: Santiago, Chile 2002 to 2014. Forests, 7, 121.

https://doi.org/10.3390/f7060121

Feltynowski, M., Kronenberg, J., Bergier, T., Kabisch, N., Łaszkiewicz, E. y Strohbach, M. W. (2018). Challenges of urban green space management in the face of using inadequate data. Urban Forestry and Urban Greening, 31, 56-66.

https://doi.org/10.1016/j.ufug.2017.12.003

Foley, A., DeFries, R., Asner, G., Barford, C., Bonan, G., Carpenter, S., … y Snyder, P. (2005). Global consequences of land use. Science, 309, 570-574.

https://doi.org/10.1126/science.1111772

Glenn, E. P., Huete, A. R., Nagler, P. L. y Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8, 2136-2160.

https://doi.org/10.3390/s8042136

Gómez-Baggethun, E. y Barton, D.N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235-245.

https://doi.org/10.1016/j.ecolecon.2012.08.019

Gómez-Baggethun, E., Gren, Å., Barton, D. N., Langemeyer, J., McPhearson, T., O’Farrell, P., … y Kremer, P. (2013). Urban ecosystem services. En T. Elmqvist, M. Fragkias, J. Goodness, B. Güneralp, P.J. Marcotullio, R.I. McDonald, … C. Wikinson (eds.), Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (pp. 175-251). Dordrecht: Springer.

Grimmond, S. U. E. (2007). Urbanization and global environmental change: local effects of urban warming. The Geographical Journal, 173(1), 83-88.

https://doi.org/10.1111/j.1475-4959.2007.232_3.x

Hardin, P. J y Jensen, R. R. (2007). The effect of urban leaf area on summertime urban surface kinetic temperatures: a Terre Haute case study. Urban Forest Urban Green, 6, 63-72.

https://doi.org/10.1016/j.ufug.2007.01.005

Hernández, I. (ed.) (2016). La estratificación en Bogotá: impacto social y alternativas para asignar subsidios. Bogotá: Secretaría Distrital de Planeación.

Huang, C. y Ye, X. (2015). Spatial Modeling of urban vegetation and land surface temperature: A case study of Beijing. Sustainability, 7, 9478-9504.

https://doi.org/10.3390/su7079478

Isaacs, P. J. y Jaimes, V. I. (2014). Análisis multitemporal de la estructura del paisaje del Distrito Capital, años 1991-2012. Bogotá: Jardín Botánico de Bogotá José Celestino Mutis.

Jensen, J. R. (2000). Remote sensing of the environment: An earth resource perspective. Upper River: Prantice Hall.

Jim, C. Y. y Chen, W. Y. (2009). Ecosystem services and valuation of urban forests in China. Cities, 26, 187-194.

https://doi.org/10.1016/j.cities.2009.03.003

Kabisch, N. y Haase, D. (2014). Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landscape and Urban Planning, 122, 129-139.

https://doi.org/10.1016/j.landurbplan.2013.11.016

Kerr, J. T. y Ostrovsky, M. (2003). From space to species: Ecological applications for remote sensing. Trends in Ecology and Evolution, 18(6), 299-305.

https://doi.org/10.1016/S0169-5347(03)00071-5

Leslie, E., Sugiyama, T., Ierodiaconou, D. y Kremer, P. (2010). Perceived and objectively measured greenness of neighbourhoods: Are they measuring the same thing? Landscape and Urban Planning, 95, 28-33.

https://doi.org/10.1016/j.landurbplan.2009.11.002

Livesley, S. J., McPherson, E. G. y Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, 45(1), 119-124.

https://doi.org/10.2134/jeq2015.11.0567

Lovell, S. T. y Taylor, J. R. (2013). Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landscape Ecology, 28, 1447-1463.

https://doi.org/10.1007/s10980-013-9912-y

Maes, J., Egoh, B., Willemen, L., Liquete, C., Vihervaara, P., Schägner, J.P., … y Bidoglio, G. (2012). Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services, 1, 31-39.

https://doi.org/10.1016/j.ecoser.2012.06.004

Maes, J., Polce, C., Zulian, G., Vandecasteele, I., Perpiña, C., Rivero, I.M., Guerra, C., Vallecillo, S., Vizcaino, P. y Hiederer, R. (2017). Mapping Regulating Ecosystem Services. En J. Burkhard y J. Maes (eds.), Mapping Ecosystem Services (pp. 179-188). Sofia: Pensoft Publishers.

Mahecha, G., Sánchez, F., Chaparro, J., Cadena, H., Tovar, G., Villota, L., Morales, G., Castro, J., Bocanegra, F. y Quintero, M. (2010). Arbolado urbano de Bogotá: Identificación, descripción y bases para su manejo. Bogotá: Secretaría Distrital de Ambiente.

McPhearson, T. (2011). Toward a sustainable New York City: Greening through urban forest restoration. En E. Slavin (ed.), Sustainability in America’s Cities: Creating the Green Metropolis (pp. 181-204). Washington: Island Press.

Mitchell, R. y Popham, F. (2008). Effect of exposure to natural environment on health inequalities: An observational population study. Lancet, 372, 1655-1660.

https://doi.org/10.1016/S0140-6736(08)61689-X

Muñoz, J. H. y Ducón, J. C. (2016). Análisis econométrico espacial de las localidades de Bogotá y municipios del borde urbano. Criterios, 9(2), 129-157. Recuperado de http://www.revistas.usb.edu.co/index.php/criterios/article/view/3088

Nesbitt, L. y Meitner, M. J. (2016). Exploring relationships between socioeconomic background and urban greenery in Portland, OR. Forests, 7, 162.

https://doi.org/10.3390/f7080162

Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M. y Williams, N. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127-138.

https://doi.org/10.1016/j.landurbplan.2014.10.018

Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., Walton, J. T. y Bond, J. (2008). A ground based method of assessing urban forest structure and ecosystem services. Arboriculture & Urban Forestry, 34(6), 347-358.

Ochoa, V. y Urbina-Cardona, N. (2017). Tools for spatially modeling ecosystem services: Publications trends, conceptual reflections and future challenges. Ecosystem Services, 26, 155-169.

https://doi.org/10.1016/j.ecoser.2017.06.011

Patz, J. A., Campbell-Lendrum, D., Holloway, T. y Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438, 310-317.

https://doi.org/10.1038/nature04188

Pedlowski, M. A., Da Silva, V. A., Adell, J. J. y Heynen, N. C. (2002). Urban forests and environmental inequality in Campos Dos Goytacazes, Rio de Janeiro, Brazil. Urban Ecosystems, 6, 9-20.

https://doi.org/10.1023/A:1025910528583

Peng, S., Piao, S., Clais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., … y Myneni, R. B. (2012). Surface Urban Heat Island Across 419 Global Big Cities. Environmental Science and Technology, 46, 696-703.

https://doi.org/10.1021/es2030438

Pickett, S. T. A., Cadenasso, M. L., Rosi-Marshall, E. J., Belt, K. T., Groffman, P. M., Grove, J. M., ... y Swan, C. M. (2017). Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosystems, 20(1), 1-14.

https://doi.org/10.1007/s11252-016-0574-9

QGIS Development Team (2011). QGIS Geographic Information System. Beaverton: Open Source Geospatial Foundation Project. Recuperado de

http://qgis.osgeo.org

R Core Team (2016). R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing. Recuperado de

https://www.R-project.org/

Rizwan, A. M., Dennis, Y. C. L. y Liu, C. (2008). A review on the generation, determination and mitigation of urban heat islands. Journal of Environmental Sciences, 20, 120-128.

https://doi.org/10.1016/S1001-0742(08)60019-4

Rodríguez-Laguna, R., Meza-Rangel, J., Vargas-Hernández, J. y Jiménez-Pérez, J. (2009). Variación en la cobertura de suelo en un ensayo de procedencias de Pinus greggii Engelm. en el cerro El Potosí, Galeana, Nuevo León. Madera y Bosques, 15(1), 47-59. Recuperado de

http://www.scielo.org.mx/scielo.php?pid=S1405-04712009000100004&script=sci_abstract&tlng=en

Romero, J. A. (2010). Transformación urbana de la ciudad de Bogotá, 1990-2010: efecto espacial de la liberalización del comercio. Perspectiva Geográfica, 15, 85-112.

Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. W. y Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation. Greenbelt: NASA/GSFCT.

Santamouris, M., Cartalis, C., Synnefa, A. y Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124.

https://doi.org/10.1016/j.enbuild.2014.09.052

Schneiders, A., Van Daele, T., Van Laduyt, W. y Van Reeth, W. (2012). Biodiversity and ecosystem services: Complementary approaches for ecosystem management? Ecological Indicators, 21, 123-133.

https://doi.org/10.1016/j.ecolind.2011.06.021

Schwarz, K., Fragkias, M., Boone, C. G., Zhou, W., McHale, M., Grove, J. M., ... y Ogden, L. (2015). Trees grow on money: urban tree canopy cover and environmental justice. PLoS One, 10(4).

https://doi.org/10.1371/journal.pone.0122051

Secretaría Distrital de Planeación (2009). Conociendo Bogotá y sus localidades: resumen de los principales aspectos físicos, demográficos y socioeconómicos. Bogotá: Alcaldía Mayor de Bogotá. Recuperado de

http://oab.ambientebogota.gov.co/es/con-la-comunidad/ES/cartilla-conociendo-las-localidades-de-bogota

Shashua-Bar, L. y Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, 31(3), 221-235

Shultz, J. M., Garfin, D. R., Espinel, Z., Araya, R., Oquendo, M. A., Wainberg, M. L., ... y Wilson, F. E. (2014). Internally displaced “victims of armed conflict” in Colombia: the trajectory and trauma signature of forced migration. Current Psychiatry Reports, 16(10), 475.

Sierra-Guerrero, M. C. y Amarillo-Suárez, A. R. (2017). Socioecological features of plant diversity in domestic gardens in the city of Bogotá, Colombia. Urban Forestry and Urban Greening, 28, 54-62.

https://doi.org/10.1016/j.ufug.2017.09.015

Storey, J., Choate, M. y Lee, K. (2014). Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance. Remote Sensing, 6, 11127-11152.

https://doi.org/10.3390/rs61111127

Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J. y James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167-178.

https://doi.org/10.1016/j.landurbplan.2007.02.001

United Nations (2018). World Urbanization Prospects: The 2018 Revision. Nueva York: Department of Economic and Social Affairs, Population Division.

United States Geological Survey (2017). Product guide: Landsat 8 Surface Reflectance Code (LaRSC) Product. Sioux Falls: Department of Interior.

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335-344.

https://doi.org/10.1016/j.isprsjprs.2009.03.007

Weng, Q., Lu, D. y Schubring, J. (2004). Estimation of land surface temperature – vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467-483.

https://doi.org/10.1016/j.rse.2003.11.005

Wilson, N. R., Norman, L. M., Villareal, M., Gass, L., Tiller, R. y Salywon, A. (2016). Comparison of remote sensing indices for monitoring of desert cienegas. Arid Land Research and Management, 30(4), 460-478.

https://doi.org/10.1080/15324982.2016.1170076

Wolch, J. R., Byrne, J. y Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and Urban Planning, 125, 234-244.

https://doi.org/10.1016/j.landurbplan.2014.01.017

Zar, J. H. (2010). Biostatistical analysis. Upper Saddle River: Prentice Hall.

Zardo, L., Geneletti, D., Pérez-Soba, M. y Van Eupen, M. (2017). Estimating the cooling capacity of Green infrastructures to support urban planning. Ecosystem Services, 26, 225-235.

https://doi.org/10.1016/j.ecoser.2017.06.016

Zhao, S., Da, L., Tang, Z., Fang, H., Song, K. y Fang, J. (2006). Ecological consequences of rapid urban expansion: Shanghai, China. Frontiers in Ecology and the Environment, 4(7), 341-346.

https://doi.org/10.1890/1540-9295(2006)004[0341:ECORUE]2.0.CO;2

Zhou, W., Pickett, S. T. y Cadenasso, M. L. (2017). Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Landscape ecology, 32(1), 15-30.

https://doi.org/10.1007/s10980-016-0432-4

Zhou, W., Troy, A., Grove, J. M. y Jenkins, J. C. (2009). Can money buy green? Demographic and socioeconomic predictors of lawn-care expenditures and lawn greenness in urban residential areas. Society and Natural Resources, 22(8), 744-760.

https://doi.org/10.1080/08941920802074330

Zulian, G., Liekens, I., Broekx, S., Kabisch, N., Kopperoinen, L. y Geneletti, D. (2017). Mapping urban ecosystem services. En J. Burkhard y J. Maes (eds.), Mapping Ecosystem Services (pp. 312-318). Sofia: Pensoft Publishers.

Cómo citar
Rubiano Calderón, K. D. (2019). Distribución de la infraestructura verde y su capacidad de regulación térmica en Bogotá, Colombia. Colombia Forestal, 22(2), 83-100. https://doi.org/10.14483/2256201X.14304
Publicado: 2019-06-24
Sección
Artículos de investigación científica y tecnológica