Efectos del estrés hídrico en crecimiento y desarrollo fisiológico de <i>Gliricidia sepium</i> (Jacq.) Kunth ex Walp.

Effects of water stress on growing and physiological development of <i>Gliricidia sepium</i> (Jacq.) Kunth ex Walp.

Palabras clave: seedling, greenhouse, photosynthesis, transpiration, leaf turgor (en_US)
Palabras clave: plántula, invernadero, fotosíntesis, transpiración, turgencia foliar (es_ES)

Resumen (es_ES)

El estrés hídrico es una reacción fisiológica de las plantas ante la disponibilidad limitada de agua. Este estudio valoró el efecto del estrés en plántulas de Gliricidia sepium cultivadas en condiciones de invernadero, utilizando plantas testigo y dos tipos de estrés (lineal y cíclico). El estrés generó reducciones en el crecimiento en altura del 30 % y de la lámina foliar del 40 %. Las plantas con estrés lineal mostraron a los 98 días un estrés severo con valores fisiológicos mínimos (fotosíntesis 4.51 µmol m-2.s-1, transpiración 6.56 µmol m-2.s-1, conductancia 48.6 µmol m-2.s-1); en cambio, las plantas con estrés cíclico si bien se expusieron a un estrés moderado, mostraron recuperación con valores fisiológicos finales estables (fotosíntesis 12.96 µmol m-2.s-1, transpiración 6.22 µmol m-2.s-1, conductancia 196.05 µmol m-.2s-1), con un retardo del crecimiento del 30 % con respecto a las plantas testigo, encontrando que en 42 días de estrés la condición es grave.

Resumen (en_US)

Water stress is a physiological reaction of plants to the limited availability of water. The study assessed the effect of stress on seedlings of Gliricidia sepium grown in greenhouse conditions, using control plants and two types of stress (linear and cyclic). Stress generated reductions in height growth of 30 % and foliar leaf 40 %. Plants with linear stress showed severe stress with minimal physiological values at 98 days (photosynthesis 4.51 µmol m-2.s-1, transpiration 6.56 µmol m-2.s-1, conductance 48.6 µmol m-2.s-1), on the other hand, plants with cyclic stress, although they were exposed to moderate stress, showed recovery with stable final physiological values (photosynthesis 12.96 µmo m-2..s-1, perspiration 6.22 µmol m-2.s-1, conductance 196.05 µmol m-2s-1), with a 30 % growth delay with respect to the control plants, finding that 42 days of stress the condition is severe.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Blum, A. (2011). Plant Breeding for Water-Limited Environments. Amsterdam: Springer Science+Business Media. https://doi.org/10.1007/978-1-4419-7491-4_2

Camareroa, J., Sánchez-Salguero, R., Sangüesa-Barredaa, G., Matías, L. (2018). Tree species from contrasting hydrological niches show divergent growthand water-use efficiency. Dendrochronologia, 52, 87-95. DOI: https://doi.org/10.1016/j.dendro.2018.10.003

Caplan, J., Galanti, R., Olshevski, S. y Eisenman., R. (2019). Water relations of street trees in green infrastructure tree trench systems. Urban Forestry & Urban Greening, 41, 170-178.

de la Rosa, J. M., Conesa, M. R., Domingo, R. y Pérez-Pastor, A. (2014). A new approach to ascertain the sensitivity to water stress of different plant water indicators in extra-early nectarine trees. Scientia Horticulturae, 169,147-153. DOI: https://doi.org/10.1016/j.scienta.2014.02.021

Drechsler, K., Kisekkaa, I. y Upadhyaya, S. (2019). A comprehensive stress indicator for evaluating plant water status in almondtrees. Agricultural Water Management, 216, 214-223.

di Vaio, C., Marallo, N., Marino, G. y Caruso, T. (2013). Effect of water stress on dry matter accumulation and partitioning inpot-grown olive trees (cv Leccino and Racioppella). Scientia Horticulturae, 164(2013), 155-159. DOI: https://doi.org/10.1016/j.scienta.2013.09.008

Ehrenberger, W., Rüger, S., Fitzke, R., Vollenweider, P., Günthardt-Goerg, P., Kuster, T., Zimmermann, U. y Arend, M. (2012). Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Londres: Functional Plant Biology. DOI: https://doi.org/10.1071/FP11206

Fernández, J. E., Rodriguez-Dominguez, C. M., Perez-Martin, A., Zimmermann, U., Rüger, S., Martín-Palomo, M. J., Torres-Ruiz, J. M., Cuevas, M. V., Sann, C., Ehren-berger, W. y Diaz-Espejo, A., (2011). Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe. Agricultural Water Management, 100, 25-35.

Girón, I. F., Corell, M., Galindo, A., Torrecillas, E., Morales, D., Dell’Amico, J., Torrecillas, A., Moreno, F. y Moriana, A. (2015). Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees. Agricultural Water Management, 148, 280-286. DOI: https://doi.org/10.1016/j.agwat.2014.10.024

Guerfel, M., Baccouri, O., Boujnah, D., Chaïbi, W. y Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, 119, 257-263. DOI: https://doi.org/10.1016/j.scienta.2008.08.006

Hammani, S. B. M., Costagli, G. y Rapoport, H. F. (2013). Cell and tissue of olive endo-carp sclerication vary according to water availability. Physiologia Plantarum, 149, 571-582.

Instituto Meteorológico Nacional (IMN) (2018). Condiciones meteorológico nacionales. Recuperado de http://www.imn.ac.cr

Krause, G. H., Winter, K., Matsubara, S., Krause, B., Jahns, P., Virgo, A., Aranda, J. y García, M. (2012). Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynthesis Research, 113, 237-285. DOI: https://doi.org/10.1007/s11120-012-9731-z

Lim, T. K. (2013). Edible Medicinal and Non-Medicinal Plants. Amsterdam: Springer Netherlands. DOI: https://doi.org/10.1007/978-94-007-7395-0_64

López-López, M., Espadafor, M., Testia, L., Loriteb, I., Orgaza, F., Fereres, E. (2018). Water use of irrigated almond trees when subjected to water deficits. Agricultural Water Management, 195, 84-93.

Maatallah, M., Ghanem, M. E., Albouchi, A., Bizid, E. y Lutts, S. (2010). A greenhouse investigation of responses to different water stress regimes of Laurus nobilis trees from two climatic regions. Journal of Arid Environments, 74, 327-337. DOI: https://doi.org/10.1016/j.jaridenv.2009.09.008

Myers, B. J. (1988). Water stress integral a link between short term stress and long term growth. Tree Physiology, 4, 315-323.

Ortuño, F. M., García-Orellana, T., Conejero, W., Ruiz-Sánchez, C. M., Alarcón, J. y Torrecillas, A. (2006). Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees, 20, 1-8. DOI: https://doi.org/10.1007/s00468-005-0004-8

Pedrero, F., Maestre-Valero, J. F., Mounzer, O., Alarcón, J. J. y Nicolás, E. (2014). Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. Agricultural Water Management, 146, 228-237. DOI: https://doi.org/10.1016/j.agwat.2014.08.013

Regent Instrument (2012). WinFOLIA pro 2012. Boston: Regent Instrument Inc. Recuperado de https://www.regentinstruments.com

Rodriguez-Dominguéz, C. M., Ehrenberger, W., Sann, S., Rüger, S., Sukhorukov, V., Martín-Palomo, M. J., Diaz-Espejo, A., Cuevas, M. V., Torres-Ruiz, J. M., Perez-Martin, A., Zimmermann, U. y Fernández, J. E. (2012). Concomitant measurements of stem sap flow and leaf turgor pressure in olive trees using the leaf patch clamp pressure probe. Agricultural Water Management, 114, 50-58. DOI: https://doi.org/10.1016/j.agwat.2012.07.007

Roussos, P. A., Denaxa, N. K., Damvakaris, T., Stournaras, V. y Argyrokastritis, I. (2010). Effect of alleviating products with different mode of action on physiology and yield of olive under drought. Scientia Horticulturae, 125, 700-711. DOI: https://doi.org/10.1016/j.scienta.2010.06.003

Sanchez-Costa, E., Poyatos, R. y Sabate, S. (2015). Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations. Agricultural and Forest Meteorology, 207, 24-37. DOI: https://doi.org/10.1016/j.agrformet.2015.03.012

Statsoft (2015). Statistica, version 9.0. Londres: Statsoft. Recuperado de http://www.statsoft.com

Szota, C., Coutts, A., Thom, J., Virahsawmy, H., Fletcher, T. y Livesley, S. (2019). Street tree stormwater control measures can reducer un off but may not benefit established trees. Landscape and Urban Planning, 182, 144-155.

Tong, X., Mu, Y., Zhang, J., Meng, P. y Li, J. (2019). Water stress controls on carbon flux and water use efficiency in a warm-temperate mixed plantation. Journal of Hydrology, 571, 669-678.

Varone, L., Ribas-Carbo, M., Cardona, C., Gallé, A., Medrano, H., Gratani, J. y Flexas, J. (2012). Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. Environmental and Experimental Botany, 75, 235-247. DOI: https://doi.org/10.1016/j.envexpbot.2011.07.007

Westhoff, M., Zimmermann, D., Schneider, H., Wegner, L. H., Geßner, P., Jakob, P., Bamberg, E., Shirley, S., Bentrup, F. W. y Zimmermann, U. (2009). Evidence for discontinuous water columns in the xylem conduit of tall birch trees. Plant Biology, 11, 307-327.

Zaharah, A. R., Bah, A. R., Mwange, N. X., Kathuli, P. y Juma, P. (1999). Management of Gliricidia (Gliricidia sepium) residues for improved sweet corn yield in an ultisol. Nutrient Cycling in Agroecosystems, 54, 31-39.

Zimmermann, U., Schneider, H., Wegner, L. H. y Haase, A. (2004). Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytologist (Tansley Review), 162, 575-615.

Zimmermann, D., Westhoff, M. y Zimmermann, G. (2007). Foliar water supply of tall trees: evidence for mucilage-facilitated moisture uptake from the atmosphere and the impact on pressure bomb measurements. Protoplasma, 232, 11-34.

Zimmermann, D., Reuss, R., Westhoff, M., Geßner, P., Bauer, W., Bamberg, E., Bentrup, F. W. y Zimmermann, U. (2008). A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status. Journal of Experimental Botany, 59(11), 3157-3167. DOI: https://doi.org/10.1093/jxb/ern171

Cómo citar
Valverde Otárola, J. C., & Arias, D. (2020). Efectos del estrés hídrico en crecimiento y desarrollo fisiológico de <i>Gliricidia sepium</i&gt; (Jacq.) Kunth ex Walp. Colombia Forestal, 23(1). https://doi.org/10.14483/2256201X.14786
Sección
Artículos de investigación científica y tecnológica