DOI:

https://doi.org/10.14483/2256201X.20277

Publicado:

27-06-2024

Número:

Vol. 27 Núm. 2 (2024): Julio-diciembre

Sección:

Artículos de investigación científica y tecnológica

Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil

Relaciones y modelación del combustible de pastizales del Cerrado en Jalapão, estado de Tocantins, Brasil

Autores/as

Palabras clave:

forest fires, fuel consumption, fuel load estimation (en).

Palabras clave:

incendios forestales, consumo de combustible, estimación de la carga de combustible (es).

Resumen (en)

The aim of this study was to understand the relationships between different destructive (grass and 1-h fuel load) and non-destructive fuel variables (grass height, litter height, number of species, and number of individuals), in order to develop models for estimating fuel load and moisture and analyzing fuel consumption. This study was carried out in a protected area located in the Cerrado biome, in the Jalapão region, Tocantins state, Brazil. The non-destructive characteristics of the vegetation were sampled to determine the live and dead fuel loads in different time-lag classes. Equations were obtained to estimate these loads, with values of R²aj, varying from 0.12 to 0.73. The considerable influence of dead grass fuel load on modeling could be observed, which is regarded as the main determining factor for a greater consumption of vegetation by fire.

Resumen (es)

El objetivo de este estudio fue comprender las relaciones entre las diferentes variables de combustible destructivas (pasto y carga de combustible de 1 h) y no destructivas (altura del pasto, altura de la hojarasca, número de especies y número de individuos), en aras de desarrollar modelos para estimar la carga de combustible y la humedad y analizar el consumo de combustible. Este estudio se llevó a cabo en un área protegida ubicada en el bioma Cerrado, en la región de Jalapão, estado de Tocantins, Brasil. Se muestrearon las características no destructivas de la vegetación para determinar las cargas de combustible vivo y muerto en diferentes clases de retardo. Se obtuvieron ecuaciones para estimar estas cargas, con valores de R²aj que varían entre 0.12 y 0.73. Se pudo observar la influencia considerable de la carga de combustible de pasto muerto en el modelado, la cual se considera el principal factor determinante para un mayor consumo de vegetación por el fuego.

Referencias

Alves, M. V. G., Batista, A. C., Soares, R. V., Koehler, H. S., & Pereira, J. F. (2009). Modelagem de umidade do material combustível, baseada em variáveis meteorológicas. Revista Floresta, 39(1), 167-174. https://doi.org/10.5380/rf.v39i1.13736

Battaglia, M. A., Rocca, M. E., Rhoades, C. C., & Ryan, M. G. (2010). Surface fuel loadings within mulching treatments in Colorado coniferous forests. Forest Ecology and Management, 260(9), 1557-1566. https://doi.org/10.1016/j.foreco.2010.08.004

Beutling, A., Batista, A. C., Stolle, L., Tetto, A. F., & Alves, M. V. G. (2012). Caracterização e modelagem de material combustível superficial em povoamentos de Pinus elliottii. Revista Floresta, 42(3), 443-452. https://doi.org/10.5380/rf.v42i3.24105.

Castro, E. A., & Kauffman, J. B. (1998). Ecosystem structure in the Brazilian Cerrado: A vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology, 14(3), 263-283. https://www.jstor.org/stable/2559908

Cawson, J. G., Duff, T. J., Tolhurst, K. G., Baillie, C. C., & Penman, T. D. (2017). Fuel moisture in Mountain Ash forests with contrasting fire histories. Forest Ecology and Management, 400, 568-577. https://doi.org/10.1016/j.foreco.2017.06.046

Dios, V. R., Fellows, A. W., Nolan, R. H., Boer, M. M., Bradstock, R. A., Domingo, F., Goulden, & M. L. (2015). A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology, 203, 64-73. http://dx.doi.org/10.1016/j.agrformet.2015.01.002

Duff, T. J., Bell, T. L., & York, A. (2012). Predicting continuous variation in forest fuel load using biophysical models: A case study in south-eastern Australia. International Journal of Wildland Fire, 22(3), 318-332. https://doi.org/10.1071/WF11087

Durigan, G., & Ratter J. A. (2016). The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology, 53(1), 11-15. https://doi.org/10.1111/1365-2664.12559

Franco, A. C., Rossatto, D. R., Silva, L. C. R., & Ferreira, C. S. (2014). Cerrado vegetation and global change: The role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Theoretical and Experimental Plant Physiology, 26(1), 19-38. https://doi.org/10.1007/s40626-014-0002-6

Ganteaume, A., Jappiot, M., Lampin, C., Guijarro, M., & Hernando, C. (2013). Flammability of some ornamental species in wildland–urban interfaces in Southeastern France: Laboratory assessment at particle level. Environmental Management, 52, 467-480. https://doi.org/10.1007/s00267-013-0067-z

Gould, J. S., Mccaw, W. L., & Cheney, N. P. (2011). Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. Forest Ecology and Management, 262, 531-546. https://doi.org/10.1016/j.foreco.2011.04.022

Hoffmann, W. A., Jaconis, S. Y., Mckinley, K. L., Geiger, E. L., Gotsch, S. G., & Franco, A. C. (2012). Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecology, 37(6), 634-643. https://doi.org/10.1111/j.1442-9993.2011.02324.x.

Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (2014). Plano de manejo para Estação Ecológica Serra Geral do Tocantins (EESGT). ICMBio.

Keane, R. E., Gray, K., & Bacciu, V. (2012). Spatial variability of wildland fuel characteristics in northern Rocky Mountain ecosystems. USDA Forest Service. https://doi.org/10.2737/RMRS-RP-98

Keane, R. E., Herynk, J. M., Toney, C., Urbanski, S. P., Lutes, D. C., & Ottmar, R. D. (2013). Evaluating the performance and mapping of three fuel classification systems using Forest Inventory and Analysis surface fuel measurements. Forest Ecology and Management, 305, 248-263. https://doi.org/10.1016/j.foreco.2013.06.001

Lin, C. C. (2004). Modeling fine dead fuel moisture in Taiwan red pine forests. Taiwan Journal of Forest Science, 19, 27-32. https://doi.org/10.7075/TJFS.200403.0027

Lydersen, J. M., Collins, B. M., Ewell, C. M., Reiner, A. L., Fites, J. A., Dow, C. B., González, P., Saah, D. S., & Battles, J. J. (2014). Using field data to assess model predictions of surface and ground fuel consumption by wildfire in coniferous forests of California. Journal of Geophysical Research: Biogeosciences, 119(3), 223-235. https://doi.org/10.1002/2013JG002475

Lydersen, J. M., Collins, B. M., Knapp, E. E., Roller, G. B., & Stephens, S. (2015). Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. International Journal of Wildland Fire, 24(4), 484-494. https://doi.org/10.1071/WF13066

Marsden-Smedley, J. B., & Catchpole, W. R. (2001). Fire modelling in Tasmanian buttongrass moorlands. III - Dead fuel moisture. International Journal of Wildland Fire, 10(2), 241-253. https://doi.org/10.1071/WF01025

Matthews, S. (2014). Dead fuel moisture research: 1991–2012. International Journal of Wildland Fire, 23(1), 78-92. https://doi.org/10.1071/WF13005

Molina, J. R., Martín, T., Silva, F. R. Y., & Herrera, M. A. (2017). The ignition index based on flammability of vegetation improves planning in the wildland-urban interface: A case study in southern Spain. Landscape and Urban Planning, 158, 129-138. https://doi.org/10.1016/j.landurbplan.2016.11.003

Ottmar, R. D. (2014). Wildland fire emissions, carbon, and climate: Modeling fuel consumption. Forest Ecology and Management, 317, 41-50. https://doi.org/10.1016/j.foreco.2013.06.010

Parresol, B. R., Blake, J. I., & Thompson, A. J. (2012). Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA. Forest Ecology and Management, 273, 29-42. https://doi.org/10.1016/j.foreco.2011.08.003

Pereira Junior, A. C., Oliveira, S. L. J., Pereira, J. M. C., & Turkman, M. A. A. (2014). Modelling fire frequency in a Cerrado savanna protected area. PloS One, 9(7), e102380. https://doi.org/10.1371/journal.pone.0102380

Prichard, S. J., Karau, E. C., Ottmar, R. D., Kennedy, M. C., Cronan, J. B., Wright, C. S., & Kean, R. E. (2014). Evaluation of the CONSUME and FOFEM fuel consumption models in pine and mixed hardwood forests of the eastern United States. Canadian Journal of Forest Research, 44(7), 784-795. https://doi.org/10.1139/cjfr-2013-0499

Prichard, S. J., Kennedy, M. C., Wright, C. S., Cronan, J. B., & Ottmar, R. D. (2017). Predicting forest floor and woody fuel consumption from prescribed burns in southern and western pine ecosystems of the United States. Forest Ecology and Management, 405, 328-338. http://dx.doi.org/10.1016/j.foreco.2017.09.025

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Santana, V. M., & Marrs, R. H. (2014). Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition. Journal of Environmental Management, 139, 88-96. https://doi.org/10.1016/j.jenvman.2014.02.027

Santos, R. P., Crema, A., Szmuchrowski, M. A., Possapp, J. J., Nogueira, C. C., Asano, K., Kawaguchi, M., & Dino, K. (2013). Atlas do corredor ecológico da região do Jalapão. ICMBio.

Santos, M. M., Batista, A. C., de Carvalho, E. V., da Silva, F. C., Pedro, C. M., & Giongo, M. (2018). Relationships between moisture content and flammability of campestral Cerrado species in Jalapão. Revista Brasileira de Ciências Agrárias, 13(4), 1-9. https://doi.org/10.5039/agraria.v13i4a5587

Santos, M. M., Batista, A. C., da Silva, A. D. P., Ganassoli Neto, E., Barradas, A. C. S., & Giongo, M. (2020). Characterization and dynamics of surface fuel of Cerrado grassland in Jalapão region – Tocantins, Brazil. Floresta, 51(1), 127-136. https://doi.org/10.5380/rf.v51i1.67440

Schmidt, I. B., Fidelis, A., Miranda, H. S., & Ticktin, T. (2017). How do the wets burn? Fire behavior and intensity in wet grasslands in the Brazilian savana. Brazilian Journal of Botany, 40, 167-175. https://doi.org/10.1007/s40415-016-0330-7

Schroeder, M. J., & Buck, C. C. (1970). Fire weather: A guide for application of meteorological information to forest fire control operations. USDA Forest Service.

Secretaria do Planejamento e da Modernização da Gestão Pública (Seplan) (2012). Atlas do Tocantins: subsídios ao planejamento da gestão territorial. Seplan.

Silva, A. D. P., Batista, A. C., Giongo, M., Santos, M. M., Ganassoli Neto, E., Carvalho, E. V., Machado, I. E. S., & Cachoeira, J. N. (2018). Influence of fire frequency and epoch of prescribed burn on topkill rates in vegetation of Cerrado in Tocantins, Brazil. In D. X. Viegas (Ed.), Advances in Forest Fire Research 2018 (pp. 232-237). Imprensa da Universidade de Coimbra. https://doi.org/10.14195/978-989-26-16-506_24

Simpson, K. J., Ripley, B. S., Christin, P., Belcher, C. M., Lehmann, C. E. R., Thomas, G. H., & Osborne, C. P. (2015). Determinants of flammability in savanna grass species. Journal of Ecology, 104(1), 138-148. https://doi.org/10.1111/1365-2745.12503

Slijepcevic, A., Anderson, W. R., Matthews, S., & Anderson, D. H. (2015). Evaluating models to predict daily fine fuel moisture content in eucalypt forest. Forest Ecology and Management, 335, 261-269. https://doi.org/10.1016/j.foreco.2014.09.040

Soares, R. V., Batista, A. C., & Tetto, A. F. (2017). Incêndios florestais: controle, efeitos e uso do fogo. Soares-Batista.

Souza, L. J. B., Soares, R. V., & Batista, A. C. (2002). Modelagem de material combustível em plantações de Pinus taeda no norte de Santa Catarina. Floresta, 33(2), 157-168.

Strassburg, B. B. N., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R., Latawiec, A. E., Oliveira Filho, F. J. B., Scaramuzza, C. A. M., Scarano, F. R., Soares-Filho, B., & Balmford, A. (2017). Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution, 1(4), 0099. https://doi.org/10.1038/s41559-017-0099

Cómo citar

APA

Moreira Santos, M., Batista, A. C., Rezende, E. H., da Silva, A. D. P., Batista, D. B., dos Santos, G. R., y Giongo, M. (2024). Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil. Colombia forestal, 27(2), e20277. https://doi.org/10.14483/2256201X.20277

ACM

[1]
Moreira Santos, M. et al. 2024. Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil. Colombia forestal. 27, 2 (jun. 2024), e20277. DOI:https://doi.org/10.14483/2256201X.20277.

ACS

(1)
Moreira Santos, M.; Batista, A. C.; Rezende, E. H.; da Silva, A. D. P.; Batista, D. B.; dos Santos, G. R.; Giongo, M. Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil. Colomb. for. 2024, 27, e20277.

ABNT

MOREIRA SANTOS, Micael; BATISTA, Antonio Carlos; REZENDE, Eduardo Henrique; DA SILVA, Allan Deyvid Pereira; BATISTA, Daniela Biondi; DOS SANTOS, Gil Rodrigues; GIONGO, Marcos. Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil. Colombia forestal, [S. l.], v. 27, n. 2, p. e20277, 2024. DOI: 10.14483/2256201X.20277. Disponível em: https://revistas.udistrital.edu.co/index.php/colfor/article/view/20277. Acesso em: 30 jun. 2024.

Chicago

Moreira Santos, Micael, Antonio Carlos Batista, Eduardo Henrique Rezende, Allan Deyvid Pereira da Silva, Daniela Biondi Batista, Gil Rodrigues dos Santos, y Marcos Giongo. 2024. «Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil». Colombia forestal 27 (2):e20277. https://doi.org/10.14483/2256201X.20277.

Harvard

Moreira Santos, M. (2024) «Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil», Colombia forestal, 27(2), p. e20277. doi: 10.14483/2256201X.20277.

IEEE

[1]
M. Moreira Santos, «Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil», Colomb. for., vol. 27, n.º 2, p. e20277, jun. 2024.

MLA

Moreira Santos, Micael, et al. «Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil». Colombia forestal, vol. 27, n.º 2, junio de 2024, p. e20277, doi:10.14483/2256201X.20277.

Turabian

Moreira Santos, Micael, Antonio Carlos Batista, Eduardo Henrique Rezende, Allan Deyvid Pereira da Silva, Daniela Biondi Batista, Gil Rodrigues dos Santos, y Marcos Giongo. «Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil». Colombia forestal 27, no. 2 (junio 27, 2024): e20277. Accedido junio 30, 2024. https://revistas.udistrital.edu.co/index.php/colfor/article/view/20277.

Vancouver

1.
Moreira Santos M, Batista AC, Rezende EH, da Silva ADP, Batista DB, dos Santos GR, et al. Relationships and Modeling of Cerrado Grassland Fuel in Jalapão, Tocantins state, Brazil. Colomb. for. [Internet]. 27 de junio de 2024 [citado 30 de junio de 2024];27(2):e20277. Disponible en: https://revistas.udistrital.edu.co/index.php/colfor/article/view/20277

Descargar cita

Visitas

12

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.
Loading...