DOI:

https://doi.org/10.14483/2256201X.22939

Publicado:

01-07-2025

Número:

Vol. 28 Núm. 2 (2025): Julio-diciembre

Sección:

Artículos de revisión

Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática

Assessing the Impact of Biochar on Agricultural Soil Quality: A Systematic Review

Autores/as

Palabras clave:

Residual biomass , soil amendment, soil properties, agricultural yield (en).

Palabras clave:

Biomasa residual, enmienda del suelo, propiedades del suelo, rendimiento agrícola (es).

Descargas

Resumen (es)

El manejo agrícola convencional ha acelerado la degradación del suelo, afectando su calidad y sostenibilidad. El biocarbón, un material carbonoso producido por pirólisis, ha surgido como una solución para restaurar suelos agrícolas y reducir la dependencia de fertilizantes químicos. En este trabajo se analizó el impacto del biocarbón en la calidad del suelo mediante una revisión sistemática de artículos científicos. Se encontró que la biomasa agrícola es la principal fuente de biocarbón (61 %), seguida de la biomasa forestal (23 %), el estiércol animal (8 %), la biomasa urbana (5 %) y la industrial (3 %). El biocarbón mejora propiedades clave del suelo, como la retención de agua (hasta en un 31 %) y la porosidad (14-19 %), además de estimular la actividad microbiana y enzimática. Estos beneficios resaltan su potencial para optimizar la calidad edáfica y aumentar el rendimiento agrícola.

Resumen (en)

Conventional agricultural management has accelerated soil degradation, affecting soil quality and sustainability. Biochar, a carbonaceous material produced by pyrolysis, has emerged as a solution to restore agricultural soils and reduce dependence on chemical fertilizers. In this work, the impact of biochar on soil quality was analyzed through a systematic review of scientific articles. Agricultural biomass was found to be the main source of biochar (61%), followed by forest biomass (23%), animal manure (8%), urban biomass (5%) and industrial biomass (3%). Biochar improves key soil properties such as water retention (by up to 31%) and porosity (14-19%), in addition to stimulating microbial and enzymatic activity. These benefits highlight its potential to optimize soil quality and increase agricultural yields.

Referencias

Adeodun, S. A., Sangodoyin, A. Y., & Ogundiran, M. B. (2022). Optimisation of biochar yield from sorted wood wastes as sustainable alternatives to burning to ash. Ecological Chemistry and Engineering S, 29(1), 15-26. https://doi.org/10.2478/eces-2022-0003

Agbede, T. M., & Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7, 100051. https://doi.org/10.1016/J.RESENV.2022.100051

AGROSAVIA. (2021). El Proyecto BiocarbonoBiocarbón y AGROSAVIA avanza en iniciativa para la reducción de emisiones de cultivos de arroz en la Orinoquia. Gobierno de Colombia. https://www.agrosavia.co/noticias/el-proyecto-biocarbono-y-agrosavia-avanzan-en-iniciativa-para-la-reducci%C3%B3n-de-emisiones-de-cultivos-de-arroz-en-la-orinoquia

Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S. F., Fenton, O., Malina, G., & Szara, E. (2020). Restoration of soil quality using biochar and brown coal waste: A review. Science of The Total Environment, 722, 137852. https://doi.org/10.1016/J.SCITOTENV.2020.137852

Bagheri Novair, S., Cheraghi, M., Faramarzi, F., Asgari Lajayer, B., Senapathi, V., Astatkie, T., & Price, G. W. (2023). Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotoxicology and Environmental Safety, 263, 115228. https://doi.org/10.1016/J.ECOENV.2023.115228

Barrezueta Unda, S., Romero Bonilla, H., & Rios Hidalgo, M. (2024). Características principales del biocarbón derivado de restos de Theobroma cacao L. para su uso en suelos agrícolas. Revista Colombiana de Química, 52(1), 19–24. https://doi.org/10.15446/rev.colomb.quim.v52n1.110591

Becerra-Agudelo, E., López, J. E., Betancur-García, H., Carbal-Guerra, J., Torres-Hernández, M., & Saldarriaga, J. F. (2022). Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon, 8(8), e10221. https://doi.org/10.1016/J.HELIYON.2022.E10221

Börcsök, Z., & Pásztory, Z. (2020). The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey. European Journal of Wood and Wood Products, 79(3), 511-526. https://doi.org/10.1007/S00107-020-01637-3

Boudjabi, S., Ababsa, N., & Chenchouni, H. (2023). Enhancing soil resilience and crop physiology with biochar application for mitigating drought stress in durum wheat (Triticum durum). Heliyon, 9(12), e22909. https://doi.org/10.1016/J.HELIYON.2023.E22909

Chagas, J. K. M., de Figueiredo, C. C., & Ramos, M. L. G. (2022). Biochar increases soil carbon pools: Evidence from a global meta-analysis. Journal of Environmental Management, 305, 114403. https://doi.org/10.1016/J.JENVMAN.2021.114403

Chen, L., Sun, S., Zhou, Y., Zhang, B., Peng, Y., Zhuo, Y., Ai, W., Gao, C., Wu, B., Liu, D., & Sun, C., (2023). Straw and straw biochar differently affect fractions of soil organic carbon and microorganisms in farmland soil under different water regimes. EnvTI, 32, 103412. https://doi.org/10.1016/J.ETI.2023.103412

Derpsch, R., Kassam, A., Reicosky, D., Friedrich, T., Calegari, A., Basch, G., Gonzalez-Sanchez, E., & dos Santos, D. R. (2024). Nature’s laws of declining soil productivity and Conservation Agriculture. Soil Security, 14, 100127. https://doi.org/10.1016/J.SOISEC.2024.100127

Fiallos-Ortega, L. R., Flores-Mancheno, L. G., Duchi-Duchi, N., Flores-Mancheno, C. I., Baño-Ayala, D., & Estrada-Orozco, L. (2015). Restauración ecológica del suelo aplicando biochar (carbón vegetal), y su efecto en la producción de Medicago sativa. Ciencia y Agricultura, 12(2), 13-20. https://www.redalyc.org/articulo.oa?id=560058661006

Frimpong, K. A., Phares, C. A., Boateng, I., Abban-Baidoo, E., & Apuri, L. (2021). One-time application of biochar influenced crop yield across three cropping cycles on tropical sandy loam soil in Ghana. Heliyon, 7(2), e06267. https://doi.org/10.1016/J.HELIYON.2021.E06267

Garau, M., Lo Cascio, M., Vasileiadis, S., Sizmur, T., Nieddu, M., Pinna, M. V., Sirca, C., Spano, D., Roggero, P. P., Garau, G., & Castaldi, P. (2024). Using biochar for environmental recovery and boosting the yield of valuable non-food crops: The case of hemp in a soil contaminated by potentially toxic elements (PTEs). Heliyon, 10(6), e28050. https://doi.org/10.1016/J.HELIYON.2024.E28050

Gopinath, A., Divyapriya, G., Srivastava, V., Laiju, A. R., Nidheesh, P. V., & Kumar, M. S. (2021). Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environmental Research, 194, 110656. https://doi.org/10.1016/J.ENVRES.2020.110656

Gutiérrez, J., Pérez, J. F., & Rubio Clemente, A. (2021). Biocarbón derivado de pellets de Pinus patula para la enmienda de suelos degradados. https://dspace.tdea.edu.co/handle/tdea/4859

Hamissou, I. G. M., Appiah, K. E. K., Sylvie, K. A. T., Ousmaila, S. M., Casimir, B. Y., & Benjamin, Y. K. (2023). Valorization of cassava peelings into biochar: Physical and chemical characterizations of biochar prepared for agricultural purposes. Scientific African, 20, e01737. https://doi.org/10.1016/J.SCIAF.2023.E01737

He, D., Luo, Y., & Zhu, B. (2024). Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. Science of The Total Environment, 922, 171259. https://doi.org/10.1016/J.SCITOTENV.2024.171259

Idbella, M., Baronti, S., Giagnoni, L., Renella, G., Becagli, M., Cardelli, R., Maienza, A., Vaccari, F. P., & Bonanomi, G. (2024). Long-term effects of biochar on soil chemistry, biochemistry, and microbiota: Results from a 10-year field vineyard experiment. Applied Soil Ecology, 195, 105217. https://doi.org/10.1016/J.APSOIL.2023.105217

Irfan, M., Ishaq, F., Muhammad, D., Khan, M. J., Mian, I. A., Dawar, K. M., Muhammad, A., Ahmad, M., Anwar, S., Ali, S., Khan, F. U., Khan, B., Bibi, H., Kamal, A., Musarat, M., Ullah, W., & Saeed, M. (2021). Effect of wheat straw derived biochar on the bioavailability of Pb, Cd and Cr using maize as test crop. Journal of Saudi Chemical Society, 25(5), 101232. https://doi.org/10.1016/J.JSCS.2021.101232

James, A., Sánchez, A., Prens, J., & Yuan, W. (2022). Biochar from agricultural residues for soil conditioning: Technological status and life cycle assessment. Current Opinion in Environmental Science & Health, 25, 100314. https://doi.org/10.1016/J.COESH.2021.100314

Jat Baloch, M. Y., Zhang, W., Sultana, T., Akram, M., Shoumik, B. A. Al, Khan, M. Z., & Farooq, M. A. (2023). Utilization of sewage sludge to manage saline–alkali soil and increase crop production: Is it safe or not? Environmental Technology & Innovation, 32, 103266. https://doi.org/10.1016/J.ETI.2023.103266

Jiang, K., Teuling, A. J., Chen, X., Huang, N., Wang, J., Zhang, Z., Gao, R., Men, J., Zhang, Z., Wu, Y., Cai, L., Huang, Z., Ma, Z., & Pan, Z. (2024). Global land degradation hotspots based on multiple methods and indicators. Ecological Indicators, 158, 111462. https://doi.org/10.1016/J.ECOLIND.2023.111462

Jiang, Z., Yang, S., Pang, Q., Xu, Y., Chen, X., Sun, X., Qi, S., & Yu, W. (2021). Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: Insights into microbial diversity. Journal of Cleaner Production, 318, 128595. https://doi.org/10.1016/J.JCLEPRO.2021.128595

Joseph, S., Cowie, A. L., van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z., & Lehmann, J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731-1764. https://doi.org/10.1111/GCBB.12885

Kalu, S., Simojoki, A., Karhu, K., & Tammeorg, P. (2021). Long-term effects of softwood biochar on soil physical properties, greenhouse gas emissions and crop nutrient uptake in two contrasting boreal soils. Agriculture, Ecosystems & Environment, 316, 107454. https://doi.org/10.1016/J.AGEE.2021.107454

Khan, Z., Zhang, K., Khan, M. N., Zhu, K., & Hu, L. (2024). Effects of biochar persistence on soil physiochemical properties, enzymatic activities, nutrient utilization, and crop yield in a three-year rice-rapeseed crop rotation. European Journal of Agronomy, 154, 127096. https://doi.org/10.1016/J.EJA.2024.127096

Lishan, T., & Alemu, F. (2024). Elucidating sole application of farmyard manure and blended NPSB fertilizer effects on soil properties at Bench Shako and West Omo zone, South West Ethiopia. Heliyon, 10(1), e22908. https://doi.org/10.1016/J.HELIYON.2023.E22908

Liu, C., Tian, J., Chen, L., He, Q., Liu, X., Bian, R., Zheng, J., Cheng, K., Xia, S., Zhang, X., Wu, J., Li, L., Joseph, S., & Pan, G. (2024a). Biochar boosted high oleic peanut production with enhanced root development and biological N fixation by diazotrophs in a sand-loamy Primisol. Science of The Total Environment, 932, 173061. https://doi.org/10.1016/J.SCITOTENV.2024.173061

Liu, C., Xia, R., Tang, M., Chen, X., Zhong, B., Liu, X., Bian, R., Yang, L., Zheng, J., Cheng, K., Zhang, X., Drosos, M., Li, L., Shan, S., Joseph, S., & Pan, G. (2022). Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China. Horticulture Research, 9, uhac108. https://doi.org/10.1093/HR/UHAC108

Liu, Y., Jiang, W., Zhao, W., Xu, L., Wang, M., Jian, J., Chen, X., Wang, E., & Yan, J. (2024b). Effects of biochar application on soil properties and the growth of Melissa officinalis L. under salt stress. Scientia Horticulturae, 338, 113704. https://doi.org/10.1016/j.scienta.2024.113704

Livia, W. P., & Suárez, N. F. M. (2021). Biocarbon from pruning and gardening residues on the Santander University campus, using a pirolisis system with minimal gas emission. Journal of Sustainability Perspectives, 1(2), 117-121. https://doi.org/10.14710/JSP.2021.11750

Li, Z., Zheng, Z., Li, H., Xu, D., Li, X., Xiang, L., & Tu, S. (2023). Review on Rice Husk Biochar as an Adsorbent for Soil and Water Remediation. Plants, 12(7), 1524. https://doi.org/10.3390/PLANTS12071524

Lozano, H. A. M., & Afanasjeva, N. (2023). Efecto de la aplicación de biochar en la actividad microbiana en suelos: Revisión. Biotecnología en el Sector Agropecuario y Agroindustrial, 21(2), 193-209. https://doi.org/10.18684/RBSAA.V21.N2.2023.2197

Luna-Robles, E. O., Cantú-Silva, I., González-Rodríguez, H., Marmolejo-Monsiváis, J., Yáñez-Díaz, M. I., Hernández, F. J., & Béjar-Pulido, S. J. (2021). Effects of forest management on the physical and hydrological properties of an Umbrisol in the Sierra Madre Occidental. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 27(1), 19-32. https://doi.org/10.5154/R.RCHSCFA.2019.11.085

Manka’abusi, D., Zongo, N., Lompo, D. J. P., Steiner, C., Marschner, B., & Buerkert, A. (2024). Soil properties and agronomic effects of repeated biochar amendment and fertilization in an urban horticultural system of Burkina Faso. European Journal of Agronomy, 159, 127234. https://doi.org/10.1016/J.EJA.2024.127234

Ma, R., Wu, X., Liu, Z., Yi, Q., Xu, M., Zheng, J., Bian, R., Zhang, X., & Pan, G. (2023). Biochar improves soil organic carbon stability by shaping the microbial community structures at different soil depths four years after an incorporation in a farmland soil. Current Research in Environmental Sustainability, 5, 100214. https://doi.org/10.1016/J.CRSUST.2023.100214

Middelanis, T. (2019). El biocarbón aplicado al suelo retiene agua y nutrientes en los valles interandinos del Departamento de Cochabamba, Bolivia. Acta Nova, 9(3), 429-449. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1683-07892019000300007&lng=es&nrm=iso&tlng=es

Mohan, D., Preetiva, B., Chaubey, A. K., Singsit, J. S., Mina, U., & Pittman Jr., C. U. (2024). Eggplant growth in wheat straw-, wheat straw biochar- and compost-amended soils: a field study of CO2 emission dynamics, soil physicochemical, microbial, and nutrient effects. Waste Management Bulletin, 1(4), 143-157. https://doi.org/10.1016/J.WMB.2023.10.004

Nsengimana, V., de Dieu Nsenganeza, J., Hagenimana, T., & Dekoninck, W. (2023). Impact of chemical fertilizers on diversity and abundance of soil-litter arthropod communities in coffee and banana plantations in southern Rwanda. Current Research in Environmental Sustainability, 5, 100215. https://doi.org/10.1016/J.CRSUST.2023.100215

Orozco Gutiérrez, G., Medina Telez, L., Elvira Espinosa, A., Cervantes Preciado, J. F., Orozco Gutiérrez, G., Medina Telez, L., Elvira Espinosa, A., & Cervantes Preciado, J. F. (2021). Biocarbón de bambú como mejorador de la fertilidad del suelo en caña de azúcar. Revista Mexicana de Ciencias Forestales, 12(65), 67-88. https://doi.org/10.29298/RMCF.V12I65.780

Osinuga, O. A., Aduloju, A. B., & Oyegoke, C. O. (2023). Impact of agrochemicals application on soil quality indicators and trace elements level of wetlands under different uses. Journal of Trace Elements and Minerals, 5, 100090. https://doi.org/10.1016/J.JTEMIN.2023.100090

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9),790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Pérez-Cabrera, C. A., Juarez-Lopez, P., Anzaldo-Hernández, J., Alia-Tejacal, I., Salcedo-Pérez, E., & Balois-Morales, R. (2021). Beneficios potenciales del biocarbón en la productividad de cultivos agrícolas. Revista Mexicana de Ciencias Agrícolas, 12(4), 713-725. https://doi.org/10.29312/REMEXCA.V12I4.2542

Pérez-Cabrera, C. A., Juárez-López, P., Anzaldo-Hernández, J., Alia-Tejacal, I., Valdez-Aguilar, L. A., Alejo-Santiago, G., Castro-Brindis, R., López-Martínez, V., & Alvarado-Camarillo, D. (2022). Biocarbón de ápices de caña de azúcar como enmienda de suelo para el cultivo de Ocimum basilicum var. thyrsiflora en invernadero. Terra Latinoamericana, 40, 1077. https://doi.org/10.28940/TERRA.V40I0.1077

Puentes-Escobar, T. C., Rodríguez-Carlosama, A., & López, C. A. (2022). Effect of biochar use as a substrate on granadilla (Passiflora ligularis Juss.) growth parameters. Agronomía Colombiana, 40(1), 22-28. https://doi.org/10.15446/agron.colomb.v40n1.98112

Purkaystha, J., Prasher, S., Afzal, M. T., Nzediegwu, C., & Dhiman, J. (2022). Wheat straw biochar amendment significantly reduces nutrient leaching and increases green pepper yield in a less fertile soil. Environmental Technology & Innovation, 28, 102655. https://doi.org/10.1016/J.ETI.2022.102655

Rathnayake, D., Schmidt, H. P., Leifeld, J., Mayer, J., Epper, C. A., Bucheli, T. D., & Hagemann, N. (2023). Biochar from animal manure: A critical assessment on technical feasibility, economic viability, and ecological impact. GCB Bioenergy, 15(9), 10781104. https://doi.org/10.1111/GCBB.13082

Rijk, I., Ekblad, A., Dahlin, A. S., Enell, A., Larsson, M., Leroy, P., Kleja, D. B., Tiberg, C., Hallin, S., & Jones, C. (2024). Biochar and peat amendments affect nitrogen retention, microbial capacity and nitrogen cycling microbial communities in a metal and polycyclic aromatic hydrocarbon contaminated urban soil. Science of The Total Environment, 936, 173454. https://doi.org/10.1016/J.SCITOTENV.2024.173454

Saharudin, D. M., Jeswani, H. K., & Azapagic, A. (2024). Biochar from agricultural wastes: Environmental sustainability, economic viability and the potential as a negative emissions technology in Malaysia. Science of The Total Environment, 919, 170266. https://doi.org/10.1016/J.SCITOTENV.2024.170266

Samaniego, J., Schmidt, K.-U., Carlino, H., Caratori, L., Carlino, M., Gogorza, A., Rodríguez, A., Gabriel, V., Amábile, V., Harrison, N., Hassan, A., & Thompson, M. (2020). Current understanding of the potential impact of carbon dioxide removal approaches on the Sustainable Development Goals in selected countries in Latin America and the Caribbean. ECLAC.

Sánchez-Reinoso, A. D., Ávila-Pedraza, E. A., Restrepo-Díaz, H., Sánchez-Reinoso, A. D., Ávila-Pedraza, E. A., & Restrepo-Díaz, H. (2020). Use of biochar in agriculture. Acta Biológica Colombiana, 25(2), 327-338. https://doi.org/10.15446/ABC.V25N2.79466

Sharma, P., Abrol, V., Nazir, J., Samnotra, R. K., Gupta, S. K., Anand, S., Biswas, J. K., Shukla, S., & Kumar, M. (2025). Optimizing soil properties, water use efficiency, and crop yield through biochar and organic manure integration in organic soil. Journal of Environmental Management, 373, 123673. https://doi.org/10.1016/j.jenvman.2024.123673

Singh Yadav, S. P., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/J.JAFR.2023.100498

Si, Y., Ma, Y., Chen, H., Ge, F., Ma, H., Gao, R., Yin, Y., & Merder, J. (2024). Biochar mediates nitrogen investment strategy involved in Chinese fir growth as revealed by molecular information on soil dissolved organic matter. Geoderma, 443, 116822. https://doi.org/10.1016/J.GEODERMA.2024.116822

Tan, M. (2023). Conversion of agricultural biomass into valuable biochar and their competence on soil fertility enrichment. Environmental Research, 234, 116596. https://doi.org/10.1016/J.ENVRES.2023.116596

Urra Ibáñez de Sendadiano, J. (2020). Beneficios y riesgos de la aplicación de enmiendas orgánicas sobre la salud de suelos agrícolas. http://addi.ehu.es/handle/10810/50205

Xu, W., Xie, X., Li, Q., Yang, X., Ren, J., Shi, Y., Liu, D., Shaheen, S. M., & Rinklebe, J. (2024). Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. Journal of Hazardous Materials, 466, 133486. https://doi.org/10.1016/J.JHAZMAT.2024.133486

Xu, Z., Lin, Y., Lin, Y., Yang, D., & Zheng, H. (2021). Adsorption behaviors of paper mill sludge biochar to remove Cu, Zn and As in wastewater. Environmental Technology & Innovation, 23, 101616. https://doi.org/10.1016/J.ETI.2021.101616

Zang, Y., Wang, M., Shohag, M. J. I., Lu, L., He, T., Liao, C., Zhang, Z., Chen, J., You, X., Zhao, Y., Wei, Y., & Tian, S. (2023). Biochar performance for preventing cadmium and arsenic accumulation, and the health risks associated with mustard (Brassica juncea) grown in co-contaminated soils. Ecotoxicology and Environmental Safety, 263, 115216. https://doi.org/10.1016/J.ECOENV.2023.115216

Zhang, M., Zhang, L., Riaz, M., Xia, H., & Jiang, C. (2021). Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in citrus production. Journal of Cleaner Production, 292, 126062. https://doi.org/10.1016/J.JCLEPRO.2021.126062

Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation, 26, 102288. https://doi.org/10.1016/J.ETI.2022.102288

Cómo citar

APA

Moreno Mesa, L. V., Rodríguez Ramírez, H. Y., y Vallejo Quintero, V. E. (2025). Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática. Colombia forestal, 28(2), e22939. https://doi.org/10.14483/2256201X.22939

ACM

[1]
Moreno Mesa, L.V. et al. 2025. Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática. Colombia forestal. 28, 2 (jul. 2025), e22939. DOI:https://doi.org/10.14483/2256201X.22939.

ACS

(1)
Moreno Mesa, L. V.; Rodríguez Ramírez, H. Y.; Vallejo Quintero, V. E. Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática. Colomb. for. 2025, 28, e22939.

ABNT

MORENO MESA, Liseth Valentina; RODRÍGUEZ RAMÍREZ, Heidy Yulieth; VALLEJO QUINTERO, Victoria Eugenia. Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática. Colombia forestal, [S. l.], v. 28, n. 2, p. e22939, 2025. DOI: 10.14483/2256201X.22939. Disponível em: https://revistas.udistrital.edu.co/index.php/colfor/article/view/22939. Acesso em: 15 jul. 2025.

Chicago

Moreno Mesa, Liseth Valentina, Heidy Yulieth Rodríguez Ramírez, y Victoria Eugenia Vallejo Quintero. 2025. «Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática». Colombia forestal 28 (2):e22939. https://doi.org/10.14483/2256201X.22939.

Harvard

Moreno Mesa, L. V., Rodríguez Ramírez, H. Y. y Vallejo Quintero, V. E. (2025) «Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática», Colombia forestal, 28(2), p. e22939. doi: 10.14483/2256201X.22939.

IEEE

[1]
L. V. Moreno Mesa, H. Y. Rodríguez Ramírez, y V. E. Vallejo Quintero, «Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática», Colomb. for., vol. 28, n.º 2, p. e22939, jul. 2025.

MLA

Moreno Mesa, Liseth Valentina, et al. «Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática». Colombia forestal, vol. 28, n.º 2, julio de 2025, p. e22939, doi:10.14483/2256201X.22939.

Turabian

Moreno Mesa, Liseth Valentina, Heidy Yulieth Rodríguez Ramírez, y Victoria Eugenia Vallejo Quintero. «Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática». Colombia forestal 28, no. 2 (julio 1, 2025): e22939. Accedido julio 15, 2025. https://revistas.udistrital.edu.co/index.php/colfor/article/view/22939.

Vancouver

1.
Moreno Mesa LV, Rodríguez Ramírez HY, Vallejo Quintero VE. Evaluación del impacto del biocarbón en la calidad de suelos agrícolas: una revisión sistemática. Colomb. for. [Internet]. 1 de julio de 2025 [citado 15 de julio de 2025];28(2):e22939. Disponible en: https://revistas.udistrital.edu.co/index.php/colfor/article/view/22939

Descargar cita

Visitas

0

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2.4 promedio

Reviewer profiles  N/D

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32% con financiadores
Competing interests 
Conflicto de intereses: No
11%
Metric
Para esta revista
Other journals
Articles accepted 
Artículos aceptados: 50%
33% aceptado
Days to publication 
217
145

Indexado: {$indexList}

Editor & editorial board
profiles
Loading...