DOI:

https://doi.org/10.14483/23448393.16931

Published:

2020-10-02

Issue:

Vol. 25 No. 3 (2020): September - December

Section:

Special Section: Best Extended Articles - WEA 2015

Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos

Analysis, Design, and Multi-physics Simulation of a Terahertz Photoconductive Antenna Using the Finite Element Method

Authors

  • Diana Gonzalez Galindo Universidad Cooperativa de Colombia
  • Cristhian Torres Urrea Universidad Cooperativa de Colombia
  • Oscar Fabian Corredor Camargo Universidad Cooperativa de Colombia https://orcid.org/0000-0001-6606-2122
  • David Suarez Mora Universidad E.C.C.I.
  • Carlos Criollo Paredes Universidad de Nariño https://orcid.org/0000-0003-4382-6892

Keywords:

COMSOL Multiphysics, different geometry, high-frequency structure, terahertz antenna (en).

Keywords:

COMSOL Multiphysics, geometr´ıas diferentes, estructura de alta frecuencia, antena de terahercios (es).

References

L. Hou, S. Chen, Z. Yan and W. Shi, “Terahertz radiation generated by laser induced plasma in photoconductive antenna”, IEEE Journal of Quantum Electronics, vol. 49, no. 9, pp. 785–789, 2013. http://doi.org/10.1109/JQE.2013.2275019

D. Turan, S. C. Corzo-Garcia, E. Castro-Camus and M. Jarrahi, “Impact of metallization on the performance of plasmonic photo-conductive terahertz emitters”, Microwave, MTT-S International Symposium, pp. 575–577, 2017. http://doi.org/ 10.1109/MWSYM.2017.8058631

Y. S. Lee, “Basic Theories of Terahertz Interaction with Matter”, in Principles of Terahertz Science and Technology, pp. 1–40, 2008. https://doi.org/10.1007/978-0-387-09540-0_2

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection”, Nano-micro Small, vol. 14, no. 44, pp. 180-243, 2018. https://doi.org/10.1002/smll.201802437

Y. S. Lee, Principles of Terahertz Science and Technology. Springer, 2009. https://doi.org/10.1007/978-0-387-09540-0

J. Zhang, M. Tuo, M. Liang, X. Wang and H. Xin, “Contribution assessment of antenna structure and in-gap photocurrent in te-rahertz radiation of photoconductive antenna”, Journal of Applied Physics, vol. 124, no. 5, p. 053107, 2018. https://doi.org/10.1063/1.5038341

N. Khiabani, Y. Huang, Y. C. Shen and S. Boyes, “Theoretical Modeling of a Photocon-ductive Antenna in a Terahertz Pulsed Sys-tem”, IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1538–1546, 2013. https://doi.org/10.1109/TAP.2013.2239599

J. A. Dionne, L. A. Sweatlock, H. A. Atwater and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model”, Physical Review B, vol. 72, no. 7, pp. 75-90, 2005. https://doi.org/10.1103/PhysRevB.72.075405

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán and S. G. García, “On the Numerical Modeling of Terahertz Photoconductive Antennas”, Journal of Infrared, Millimeter and Terahertz Waves, vol. 35, no. 5, pp. 432–444, 2014. https://doi.org/10.1007/s10762-014-0060-5

N. T. Yardimci, S. H. Yang, C. W. Berry and M. Jarrahi, “High-Power Terahertz Generation Using Large-Area Plasmonic Photocon-ductive Emitters”, IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 2, pp. 223–229, 2015. https://doi.org/10.1109/TTHZ.2015.2395417

S. H. Yang, M. R. Hashemi, C. W. Berry and M. Jarrahi, “7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photocon-ductive Emitters With Three-Dimensional Plas-monic Contact Electrodes”, IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 5, pp. 575–581, 2014. https://doi.org/10.1109/TTHZ.2014.2342505

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu and M. Jarrahi, “Significant performance enhancement in photoconductive te-rahertz optoelectronics by incorporating plasmonic contact electrodes”, Nature Communications, vol. 4, no. 1, p. 1622, 2013. https://doi.org/10.1038/ncomms2638

N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas”, Jour-nal of the Optical Society of America B, vol. 33, no. 4, p. 748, 2016. https://doi.org/10.1364/JOSAB.33.000748

Z. Piao, M. Tani and K. Sakai, “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas”, Japanese Journal of Applied Physics, vol. 39, no. 1, pp. 96–100, 2000. https://doi.org/10.1143/JJAP.39.96

L. Duvillaret, F. Garet, J. F. Roux and J. L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 4, pp. 615–623, 2001. https://doi.org/10.1109/2944.974233

K. Ioannidi, C. Christakis, S. Sautbekov, P. Frangos and S. K. Atanov, “The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime”, International Journal of Antennas and Propagation, vol. 2014, pp. 1–9, 2014. https://doi.org/10.1155/2014/989348

J. Ren, Z. Jiang, M. I. Bin Shams, P. Fay and L. Liu, “Photo-induced electromagnetic band gap structures for optically tunable microwave filters”, Progress in Electromagnetics Research, vol. 161, pp. 101–111, 2018. https://doi.org/10.2528/PIER17120306

P. Johari and J. M. Jornet, "Packet size optimization for wireless nanosensor networks in the Terahertz band", in IEEE Interna-tional Conference on Communications (ICC), Kuala Lumpur, 2016. https://doi.org/10.1109/ICC.2016.7510603

J. M. Jornet and I. F. Akyildiz, “Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks”, IEEE Journal on Selected Areas in Communications, vol. 31, no. 12, pp. 685-694, 2013. https://doi.org/10.1109/JSAC.2013.SUP2.1213001

T.Y. Jourau, M. Bashirpour, M. Forouzmehr, S. Hosseininejad, M. Kolahdouz and M. Neshat, “Improvement of Terahertz Photo-conductive Antenna using Optical Antenna Array of ZnO”, Scientific Reports, vol. 9, no. 1414, 2019. https://doi.org/10.1038/s41598-019-38820-3

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen and W. Lu, “Towards sensitive terahertz detection via thermoe-lectric manipulation using graphene transistors”, NPG Asia Materials, vol. 10, pp. 318-327, 2018. https://doi.org/10.1038/s41427-018-0032-7

H. Hubers, M. F. Kimmitt, N. Hiromoto and E. Brundermann, “Terahertz Spectroscopy: System and Sensitivity Considerations”, IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 321-331, 2011. https://doi.org/10.1109/TTHZ.2011.2159877

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú and E. U. Rafailov, “Boosting Terahertz Photoconductive Antenna Performance with Op-timised Plasmonic Nanostructures”, Scientific Reports, vol. 8, no. 6624, 2018. https://doi.org/10.1038/s41598-018-25013-7

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F Oliveira and D. Zimdars, “THz imaging and sensing for security applica-tions—explosives, weapons and drugs”, Semiconductor Science and Technology, vol. 20, no. 7, 2005. https://doi.org/10.1088/0268-1242/20/7/018

J. Alda, J. M. Rico-García, J. M. López-Alonso and G. Boreman, “Optical antennas for nano-photonic applications”, Semiconduc-tor Science and Technology, vol. 16, no. 5, 2005. https://doi.org/10.1088/0957-4484/16/5/017

E. Üstün, Ö. Eroglu, U. M. Gür and Ö. Ergül, “Investigation of nanoantenna geometries for maximum field enhancements at optical frequencies”, in 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), St. Petersburg, 2017, pp. 3673-3680. https://doi.org/10.1109/PIERS.2017.8262396

How to Cite

APA

Gonzalez Galindo, D., Torres Urrea, C., Corredor Camargo, O. F., Suarez Mora, D., and Criollo Paredes, C. (2020). Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos. Ingeniería, 25(3), 378–392. https://doi.org/10.14483/23448393.16931

ACM

[1]
Gonzalez Galindo, D. et al. 2020. Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos. Ingeniería. 25, 3 (Oct. 2020), 378–392. DOI:https://doi.org/10.14483/23448393.16931.

ACS

(1)
Gonzalez Galindo, D.; Torres Urrea, C.; Corredor Camargo, O. F.; Suarez Mora, D.; Criollo Paredes, C. Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos. Ing. 2020, 25, 378-392.

ABNT

GONZALEZ GALINDO, Diana; TORRES URREA, Cristhian; CORREDOR CAMARGO, Oscar Fabian; SUAREZ MORA, David; CRIOLLO PAREDES, Carlos. Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos. Ingeniería, [S. l.], v. 25, n. 3, p. 378–392, 2020. DOI: 10.14483/23448393.16931. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/16931. Acesso em: 8 jan. 2026.

Chicago

Gonzalez Galindo, Diana, Cristhian Torres Urrea, Oscar Fabian Corredor Camargo, David Suarez Mora, and Carlos Criollo Paredes. 2020. “Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos”. Ingeniería 25 (3):378-92. https://doi.org/10.14483/23448393.16931.

Harvard

Gonzalez Galindo, D. (2020) “Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos”, Ingeniería, 25(3), pp. 378–392. doi: 10.14483/23448393.16931.

IEEE

[1]
D. Gonzalez Galindo, C. Torres Urrea, O. F. Corredor Camargo, D. Suarez Mora, and C. Criollo Paredes, “Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos”, Ing., vol. 25, no. 3, pp. 378–392, Oct. 2020.

MLA

Gonzalez Galindo, Diana, et al. “Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos”. Ingeniería, vol. 25, no. 3, Oct. 2020, pp. 378-92, doi:10.14483/23448393.16931.

Turabian

Gonzalez Galindo, Diana, Cristhian Torres Urrea, Oscar Fabian Corredor Camargo, David Suarez Mora, and Carlos Criollo Paredes. “Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos”. Ingeniería 25, no. 3 (October 2, 2020): 378–392. Accessed January 8, 2026. https://revistas.udistrital.edu.co/index.php/reving/article/view/16931.

Vancouver

1.
Gonzalez Galindo D, Torres Urrea C, Corredor Camargo OF, Suarez Mora D, Criollo Paredes C. Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos. Ing. [Internet]. 2020 Oct. 2 [cited 2026 Jan. 8];25(3):378-92. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/16931

Download Citation

Visitas

1598

Dimensions


PlumX


Downloads

Download data is not yet available.

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
3
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
31
145

Indexed in

Editor & editorial board
profiles
Loading...