DOI:
https://doi.org/10.14483/23448393.16931Published:
2020-10-02Issue:
Vol. 25 No. 3 (2020): September - DecemberSection:
Special Section: Best Extended Articles - WEA 2015Análisis, diseño y simulación multifísica de una antena Fotoconductora Terahertz usando el método de elementos finitos
Analysis, Design, and Multi-physics Simulation of a Terahertz Photoconductive Antenna Using the Finite Element Method
Keywords:
COMSOL Multiphysics, different geometry, high-frequency structure, terahertz antenna (en).Keywords:
COMSOL Multiphysics, geometr´ıas diferentes, estructura de alta frecuencia, antena de terahercios (es).Downloads
References
L. Hou, S. Chen, Z. Yan and W. Shi, “Terahertz radiation generated by laser induced plasma in photoconductive antenna”, IEEE Journal of Quantum Electronics, vol. 49, no. 9, pp. 785–789, 2013. http://doi.org/10.1109/JQE.2013.2275019
D. Turan, S. C. Corzo-Garcia, E. Castro-Camus and M. Jarrahi, “Impact of metallization on the performance of plasmonic photo-conductive terahertz emitters”, Microwave, MTT-S International Symposium, pp. 575–577, 2017. http://doi.org/ 10.1109/MWSYM.2017.8058631
Y. S. Lee, “Basic Theories of Terahertz Interaction with Matter”, in Principles of Terahertz Science and Technology, pp. 1–40, 2008. https://doi.org/10.1007/978-0-387-09540-0_2
N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection”, Nano-micro Small, vol. 14, no. 44, pp. 180-243, 2018. https://doi.org/10.1002/smll.201802437
Y. S. Lee, Principles of Terahertz Science and Technology. Springer, 2009. https://doi.org/10.1007/978-0-387-09540-0
J. Zhang, M. Tuo, M. Liang, X. Wang and H. Xin, “Contribution assessment of antenna structure and in-gap photocurrent in te-rahertz radiation of photoconductive antenna”, Journal of Applied Physics, vol. 124, no. 5, p. 053107, 2018. https://doi.org/10.1063/1.5038341
N. Khiabani, Y. Huang, Y. C. Shen and S. Boyes, “Theoretical Modeling of a Photocon-ductive Antenna in a Terahertz Pulsed Sys-tem”, IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1538–1546, 2013. https://doi.org/10.1109/TAP.2013.2239599
J. A. Dionne, L. A. Sweatlock, H. A. Atwater and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model”, Physical Review B, vol. 72, no. 7, pp. 75-90, 2005. https://doi.org/10.1103/PhysRevB.72.075405
E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán and S. G. García, “On the Numerical Modeling of Terahertz Photoconductive Antennas”, Journal of Infrared, Millimeter and Terahertz Waves, vol. 35, no. 5, pp. 432–444, 2014. https://doi.org/10.1007/s10762-014-0060-5
N. T. Yardimci, S. H. Yang, C. W. Berry and M. Jarrahi, “High-Power Terahertz Generation Using Large-Area Plasmonic Photocon-ductive Emitters”, IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 2, pp. 223–229, 2015. https://doi.org/10.1109/TTHZ.2015.2395417
S. H. Yang, M. R. Hashemi, C. W. Berry and M. Jarrahi, “7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photocon-ductive Emitters With Three-Dimensional Plas-monic Contact Electrodes”, IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 5, pp. 575–581, 2014. https://doi.org/10.1109/TTHZ.2014.2342505
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu and M. Jarrahi, “Significant performance enhancement in photoconductive te-rahertz optoelectronics by incorporating plasmonic contact electrodes”, Nature Communications, vol. 4, no. 1, p. 1622, 2013. https://doi.org/10.1038/ncomms2638
N. Burford and M. El-Shenawee, “Computational modeling of plasmonic thin-film terahertz photoconductive antennas”, Jour-nal of the Optical Society of America B, vol. 33, no. 4, p. 748, 2016. https://doi.org/10.1364/JOSAB.33.000748
Z. Piao, M. Tani and K. Sakai, “Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas”, Japanese Journal of Applied Physics, vol. 39, no. 1, pp. 96–100, 2000. https://doi.org/10.1143/JJAP.39.96
L. Duvillaret, F. Garet, J. F. Roux and J. L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 4, pp. 615–623, 2001. https://doi.org/10.1109/2944.974233
K. Ioannidi, C. Christakis, S. Sautbekov, P. Frangos and S. K. Atanov, “The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime”, International Journal of Antennas and Propagation, vol. 2014, pp. 1–9, 2014. https://doi.org/10.1155/2014/989348
J. Ren, Z. Jiang, M. I. Bin Shams, P. Fay and L. Liu, “Photo-induced electromagnetic band gap structures for optically tunable microwave filters”, Progress in Electromagnetics Research, vol. 161, pp. 101–111, 2018. https://doi.org/10.2528/PIER17120306
P. Johari and J. M. Jornet, "Packet size optimization for wireless nanosensor networks in the Terahertz band", in IEEE Interna-tional Conference on Communications (ICC), Kuala Lumpur, 2016. https://doi.org/10.1109/ICC.2016.7510603
J. M. Jornet and I. F. Akyildiz, “Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks”, IEEE Journal on Selected Areas in Communications, vol. 31, no. 12, pp. 685-694, 2013. https://doi.org/10.1109/JSAC.2013.SUP2.1213001
T.Y. Jourau, M. Bashirpour, M. Forouzmehr, S. Hosseininejad, M. Kolahdouz and M. Neshat, “Improvement of Terahertz Photo-conductive Antenna using Optical Antenna Array of ZnO”, Scientific Reports, vol. 9, no. 1414, 2019. https://doi.org/10.1038/s41598-019-38820-3
C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen and W. Lu, “Towards sensitive terahertz detection via thermoe-lectric manipulation using graphene transistors”, NPG Asia Materials, vol. 10, pp. 318-327, 2018. https://doi.org/10.1038/s41427-018-0032-7
H. Hubers, M. F. Kimmitt, N. Hiromoto and E. Brundermann, “Terahertz Spectroscopy: System and Sensitivity Considerations”, IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 321-331, 2011. https://doi.org/10.1109/TTHZ.2011.2159877
S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú and E. U. Rafailov, “Boosting Terahertz Photoconductive Antenna Performance with Op-timised Plasmonic Nanostructures”, Scientific Reports, vol. 8, no. 6624, 2018. https://doi.org/10.1038/s41598-018-25013-7
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F Oliveira and D. Zimdars, “THz imaging and sensing for security applica-tions—explosives, weapons and drugs”, Semiconductor Science and Technology, vol. 20, no. 7, 2005. https://doi.org/10.1088/0268-1242/20/7/018
J. Alda, J. M. Rico-García, J. M. López-Alonso and G. Boreman, “Optical antennas for nano-photonic applications”, Semiconduc-tor Science and Technology, vol. 16, no. 5, 2005. https://doi.org/10.1088/0957-4484/16/5/017
E. Üstün, Ö. Eroglu, U. M. Gür and Ö. Ergül, “Investigation of nanoantenna geometries for maximum field enhancements at optical frequencies”, in 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), St. Petersburg, 2017, pp. 3673-3680. https://doi.org/10.1109/PIERS.2017.8262396
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 oscar fabian corredor camargo, Diana Gonzalez Galindo, Cristhian Torres Urrea, Carlos Criollo Paredes, David Suarez Mora

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
From the edition of the V23N3 of year 2018 forward, the Creative Commons License "Attribution-Non-Commercial - No Derivative Works " is changed to the following:
Attribution - Non-Commercial - Share the same: this license allows others to distribute, remix, retouch, and create from your work in a non-commercial way, as long as they give you credit and license their new creations under the same conditions.












