Análisis, diseño y simulación Multifísica de una Antena Fotoconductora Te-rahertz usando el Método de elementos finitos

Analysis, Design and Multi-physics Simulation of a Terahertz Photoconduc-tive Antenna Using Finite Element Method

  • Oscar Fabian Corredor Camargo Universidad Cooperativa de Colombia
  • Diana Gonzalez Galindo Universidad Cooperativa de Colombia
  • Cristhian Torres Urrea Universidad Cooperativa de Colombia
  • Carlos Criollo Paredes Universidad de Nariño
  • David Suarez Mora Universidad E.C.C.I.
Palabras clave: Terahertz Antenna, High-Frequency Structure, COMSOL Multiphysics ®, Different geometry (en_US)
Palabras clave: Antena THz, Estructuras de alta frecuencia, COMSOL Multiphysics®, Geometrías diferentes (es_ES)

Resumen (en_US)

Context: The study of nanotechnology has shown great advances that include research and exploration in the TeraHertz (THz) region, where one of its most common approaches is the use of Photoconductive Antennas (PCA) due to the intrinsic properties of their emission and nature non-destructive of this type of radiation.

Method: This paper describes the antenna concept, its radiation principles, the mathematical foundations, the material used for radiation and the adjustment of the parameters to find a result of the pulse in THz, by using the finite element method accessible in COMSOL Multiphysics® software.

Results: The result of a computational modeling is presented, which studies the behavior of a PCA, where the input of the chosen model corresponds to the geometry and material of the antenna, showing the concentration of the electric field in the GAP zone of the dipole and the substrate of the semiconductor.

Conclusions: Given the theoretical foundations that describe the behavior of PCAs in THz, it was possible to configure parameters such as the geometry of the antenna, the laser to be used and the construction materials to achieve the generation of the photocurrent peak in the order of 0, 1 to 1.2 THz.

Resumen (es_ES)

Contexto: El estudio de las nanotecnologías ha mostrado grandes avances que incluyen la investigación y exploración en la región TeraHertz (THz), donde uno de sus enfoques más comunes es el uso de Antenas Fotoconductoras (PCA) debido a las propiedades intrínsecas de su emisión y a la naturaleza no destructiva de este tipo de radiación.

Método: Este artículo describe el concepto de antena, sus principios de radiación, los fundamentos matemáticos, el material utilizado para la radiación y el ajuste de los parámetros para encontrar un resultado del pulso en THz, mediante el uso del método de elementos finitos accesible en el software COMSOL Multiphysics®.

Resultados: Se presenta el resultado de un modelado computacional, que estudia el comportamiento de una PCA, donde la entrada del modelo escogida corresponde a la geometría y al material de la antena, mostrando la concentración del campo eléctrico en la zona GAP del dipolo y del substrato del semiconductor.

Conclusiones: Dados los fundamentos teóricos que describen el comportamiento de las PCA en THz, fue posible configurar parámetros como la geometría de la antena, el láser a usar y los materiales de construcción para lograr la generación del pico de fotocorriente en el orden de 0,1 hasta 1,2 THz.


La descarga de datos todavía no está disponible.


L. Hou, S. Chen, Z. Yan and W. Shi, "Terahertz radiation generated by laser induced plasma in photoconductive antenna", IEEE J. Quantum Electronics, vol. 49, no. 9, pp. 785-789, 2013.

D. Turan, S. C. Corzo-Garcia, E. Castro-Camus and M. Jarrahi, "Impact of metallization on the performance of plasmonic photo-conductive terahertz emitters", IEEE MTT-S Int. Mi-crow. Symp. Dig., pp. 575-577, 2017.

Y. S. Lee, "Basic Theories of Terahertz Interaction with Matter", Princ. Terahertz Sci. Tech-nol., pp. 1-40, 2008.

N. T. Yardimci and M. Jarrahi, "Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection", Wiley, Nano-micro Small, p. 180-243, 2018.

Y.S. Lee, "Principles of Terahertz Science and Technology", Springer US, Springer-Verlag US, 2009.

J. Zhang, M. Tuo, M. Liang, X. Wang and H. Xin, "Contribution assessment of antenna structure and in-gap photocurrent in te-rahertz radiation of photoconductive antenna", J. Appl. Phys., vol. 124, no. 5, p. 053, 2018.

N. Khiabani, Y. Huang, Y. C. Shen and S. Boyes, "Theoretical Modeling of a Photocon-ductive Antenna in a Terahertz Pulsed Sys-tem", IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1538-1546, 2013.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater and A. Polman, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model", Phys. Rev. B, vol. 72, no. 7, p. 075-090, 2005.

E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán and S. G. García, "On the Numerical Modeling of Terahertz Photoconductive Antennas", J. Infrared, Millimeter, Terahertz Waves, vol. 35, no. 5, pp. 432-444, 2014.

N. T. Yardimci, S. H. Yang, C. W. Berry and M. Jarrahi, "High-Power Terahertz Generation Using Large-Area Plasmonic Photocon-ductive Emitters", IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 2, pp. 223-229, 2015.

S. H. Yang, M. R. Hashemi, C. W. Berry and M. Jarrahi, "7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photocon-ductive Emitters With Three-Dimensional Plas-monic Contact Electrodes", IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 5, pp. 575-581, 2014.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu and M. Jarrahi, "Significant performance enhancement in photoconductive te-rahertz optoelectronics by incorporating plasmonic contact electrodes", Nat. Commun., vol. 4, no. 1, p. 1622, 2013.

N. Burford and M. El-Shenawee, "Computational modeling of plasmonic thin-film terahertz photoconductive antennas", J. Opt. Soc. Am. B, vol. 33, no. 4, p. 748, 2016.

Z. Piao, M. Tani and K. Sakai, "Carrier Dynamics and Terahertz Radiation in Photoconductive Antennas", Jpn. J. Appl. Phys., vol. 39, no. Part 1, No. 1, pp. 96-100, 2000.

L. Duvillaret, F. Garet, J.-F. Roux and J. L. Coutaz, "Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas", IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 615-623, 2001.

K. Ioannidi, C. Christakis, S. Sautbekov, P. Frangos and S. K. Atanov, "The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime", Int. J. Antennas Propag., vol. 2014, pp. 1-9, 2014.

J. Ren, Z. Jiang, M. I. Bin Shams, P. Fay and L. Liu, "Photo-induced electromagnetic band gap structures for optically tunable microwave filters", Prog. Electromagn. Res., vol. 161, pp. 101-111, 2018.

P. Johari and J. M. Jornet, "Packet size optimization for wireless nanosensor networks in the Terahertz band". 2016 IEEE Inter-national Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1-6 (2016).

J. M. Jornet and I. F. Akyildiz, "Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks", IEEE Journal on Selected Areas in Communications, vol. 31, no. 12, pp. 685-694, 2013.

T.Y. Jourau, M. Bashirpour, M. Forouzmehr, S. Hosseininejad, M. Kolahdouz and M. Neshat, "Improvement of Terahertz Photo-conductive Antenna using Optical Antenna Array of ZnO", Scientific ReportsSP, 2019.

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen and W. Lu, "Towards sensitive terahertz detection via thermoe-lectric manipulation using graphene transistors", J.O. NPG Asia Materials, 2018.

H. Hubers, M. F. Kimmitt, N. Hiromoto and E. Brundermann, "Terahertz Spectroscopy: System and Sensitivity Considerations", IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 321-331, 2011.

S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú and E. U. Rafailov, "Boosting Terahertz Photoconductive Antenna Performance with Op-timised Plasmonic Nanostructures", J.O. Scientific Reports - SP, 2018.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F Oliveira and D. Zimdars, "THz imaging and sensing for security applica-tions-explosives, weapons and drugs", Sem-iconductor Science and Technology. IOP Science Publishing, 2005.

J. Alda, J. M. Rico-García, J. M. López-Alonso and G. Boreman, "Optical antennas for nano-photonic applications", Semiconduc-tor Science and Technology. IOP Science Publish-ing, 2005.

E. Üstün, Ö. Eroglu, U. M. Gür and Ö. Ergül, "Investigation of nanoantenna geometries for maximum field enhancements at optical frequencies", in 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), St. Petersburg, 2017, pp. 3673-3680.

Cómo citar
Corredor Camargo, O. F., Gonzalez Galindo, D., Torres Urrea, C., Criollo Paredes, C., & Suarez Mora, D. (2020). Analysis, Design and Multi-physics Simulation of a Terahertz Photoconduc-tive Antenna Using Finite Element Method. Ingeniería, 25(3).
Publicado: 2020-10-02
Sección Especial: Mejores artículos extendidos - WEA 2020

Artículos más leídos del mismo autor/a