DOI:

https://doi.org/10.14483/23448393.22111

Published:

2025-08-01

Issue:

Vol. 30 No. 2 (2025): May-August

Section:

Electrical, Electronic and Telecommunications Engineering

Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers

Metodología basada en la integral del error al cuadrado para el diseño de controladores difusos

Authors

Keywords:

Fuzzy controller design, Fuzzy experimental method, riterion of squared error integral, Mamdani controller, membership function parameterization (en).

Keywords:

Diseño de controladores difusos, método de diseño fuzzy, criterio de la integral del error al cuadrado, controlador Mamdani, parametrización de la función de membresía (es).

Downloads

Abstract (en)

Context: This work applies an experimental methodology to the design of a control system based on a non-conventional Mamdani fuzzy controller that regulates the speed of an encoder-based DC motor.
Method: The proposed methodology consists of four steps: i) fuzzy controller input/output selection, ii) fuzzy controller design, iii) controller hardware implementation, and iv) membership function parameterization. This methodology generates seven pairs of unique error and control signals
that are differentiated by experimentally adjusting the parameters of the triangular membership functions used for the fuzzy controller design, which was implemented in an Atmega328P micro-controller. For each of the seven approaches defined, an experiment was performed, performing a control action to obtain the transient response of the DC motor speed when the reference was a step-type signal.
Results: The motor response and the reference signal were used to calculate the error, whose squared error integral was estimated to determine which experimental approach yielded the best fuzzy control results, i.e., with the lowest possible error.
Conclusions: The proposed methodology ensures the minimization of the squared error integral between the signal to be controlled and the reference signal. For fitting 6, the performance index obtained was J = 0.0002, which
represents a decrease of ≈ 99.99 % with respect to the worst case (fitting 1), whose performance index was J = 4.10.

Abstract (es)

Contexto: Este trabajo aplica una metodología experimental al diseño de un sistema de control basado en un controlador difuso no convencional del tipo Mamdani que regula la velocidad de un motor DC basado en encoders.
Métodos: La metodología propuesta consta de cuatro pasos: i) selección de la entrada/salida del controlador difuso, ii) diseño del controlador difuso, iii) implementación en hardware del controlador y iv) parametrización de las funciones de membresía. Esta metodología genera siete pares de señales únicas de error y de control que se diferencian ajustando experimentalmente los parámetros de las funciones de membresía triangulares usadas para el diseño del controlador difuso, el cual se implementó en un microcontrolador Atmega328P. Para cada uno de los siete enfoques usados, se realizó un experimento en el que se realizó una acción de control para obtener la respuesta transitoria de la velocidad del motor de DC cuando la referencia era una señal de tipo escalón.
Resultados: La respuesta del motor y la señal de referencia se utilizaron para calcular el error, cuya integral de error al cuadrado se estimó a fin de determinar qué enfoque experimental brindaba los mejores resultados de control difuso, i.e., con el menor error posible.
Conclusiones: La metodología propuesta garantiza la minimización de la integral del error al cuadrado entre la señal a controlar y la señal de referencia. Para el ajuste 6, el índice de desempeño obtenido fue J = 0.0002, lo que representa una disminución de ≈ 99.99% respecto al peor caso (ajuste 1), donde el índice de desempeño fue J = 4.10.

References

I. Mazon and J. Ramírez, “Ajuste de controladores difusos mediante algoritmos genéticos,” Ing, Revista de la Universidad de Costa Rica, vol. 9, no. 1–2, pp. 95–107, Sep. 2011. https://doi.org/10.15517/ring.v9i1-2.7726

E. R. Moo-Medina and D. Romero, “Speed control of a DC motor with a type-2 fuzzy logic controller subject to a large disturbance,” Comp. Sist., vol. 22, no. 2, pp. 521–536, Jul. 2018. https://doi.org/10.13053/cys-22-2-2251

J. Calderón, I. V. Parra, and H. Montana, “Controladores difusos en microcontroladores: software para diseño e implementación,” Vis Elect, vol. 4, no. 2, pp. 64–76, 2010. https://doi.org/10.14483/22484728.273

M. L. Rodríguez and Y. E. Huertas, “metodología para el diseño de Conjuntos Difusos Tipo-2 a partir de Opiniones de Expertos,” Ing., vol. 21, no. 2, pp. 121–137, May 2016. https://doi.org/10.14483/udistrital.jour.reving.2016.2.a01

H. A. Yousef, “Fuzzy logic control of DC motor drives,” IFAC Proc., vol. 30, no. 6, pp. 751–756, May 1997. https://doi.org/10.1016/s1474-6670(17)43455-0

D.-I. Kim, J.W. Lee, and S. Kim, “Fuzzy algorithm for commutation of permanent magnet AC servo motors without absolute rotor position sensors,” in Proc. 1992 Int. Conf. Ind. Elect. Control Instrum. Automat. IEEE, pp. 144–149. https://doi.org/10.1109/iecon.1992.254590

Y.-S. Kung and C.-M. Liaw, “A fuzzy controller improving a linear model following controller for motor drives,” IEEE Trans. Fuzzy Syst., vol. 2, no. 3, pp. 194–202, 1994. https://doi.org/10.1109/91.298448

A. J. Agama, C. Cevallos, R. V. García, andW. Maliza, “implementación de control de velocidad de un motor dc con controlador pid convencional y difuso p-pi-pid con diferentes tipos de entradas utilizando software Labview,” J Sci. Res., vol. 5, no. 2, pp. 227–243, 2020.

L. Fitz, J. R. García, J. Rodríguez, and R. V. Carrillo, “diseño de un controlador de velocidad con base en lógica difusa para un motor de CD,” in Cong. Int. Invest. Acad J. Celaya 2021, vol. 13, no. 10, 2021, pp. 848–853.

F. Betin, D. Pinchon, and G.-A. Capolino, “Fuzzy logic applied to speed control of a stepping motor drive,” IEEE Trans. Ind. Elect., vol. 47, no. 3, pp. 610–622, Jun. 2000. https://doi.org/10.1109/41.847902

M. Masiala, B. Vafakhah, J. Salmon, and A. M. Knight, “Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1732–1740, 2008. https://doi.org/10.1109/TIA.2008.2006342

P. Parikh, S. Sheth, R. Vasani, and J. K. Gohil, “Implementing fuzzy logic controller and PID controller to a DC encoder motor: A case of an automated guided vehicle”,” Proc. Manuf., vol. 20, no. 2, pp. 219–226, 2018. https://doi.org/10.1016/j.promfg.2018.02.032

H. Maghfiroh, J. Slamet Saputro, F. Fahmizal, and M. Ahmad Baballe, “Adaptive fuzzy-PI for induction motor speed control,” J. Fuzzy Syst. Control., vol. 1, no. 1, pp. 1–5, Mar. 2023. https://doi.org/10.59247/jfsc.v1i1.24

M. Almaged, A. Mahmood, and Y. H. S. Alnema, “Design of an integral fuzzy logic controller for a variable-speed wind turbine model,” J. Robot Control, vol. 4, no. 6, pp. 762–768, Nov. 2023. https://doi.org/10.18196/jrc.v4i6.20194

J. C. Munoz-Esparza and J. E. Jaime-Leal, “A novel approach to a recurrent fuzzy logic controller design applied to systems with multiple disturbances,” J. Chem. Eng. Theor. Appl. Chem., vol. 81, no. 602, May 2024. https://doi.org/10.55815/428834

R. K. Signe and F. B. Motto, “Fuzzy-PID controller based sliding-mode for suppressing low frequency oscillations of the synchronous generator,” Heliyon, vol. 10, no. 15, p. e35035, Aug. 2024. https://doi.org/10.1016/j.heliyon.2024.e35035

K. Ogata, Ingenieria de control moderna, 5th ed. Madrid, Espana: Pearson, 2010.

K. M. Passino and S. Yurkovich, Fuzzy control, 1st ed. Menlo Park, Calif.: Addison-Wesley, 1998.

N. Shahbazova, S. Michio, and K. Janusz, “Recent developments in fuzzy logic and fuzzy sets,” Stud. Fuzziness Soft. Comput., vol. 1, no. 1, p. 211, Mar. 2020. https://doi.org/10.1007/978-3-030-38893-5

K. Ogata, Discrete-time control syst, 2nd ed. Upper Saddle River, N.J.: Prentice-Hall, 1998.

M. Kai, K. Frank, K. Rudolf, and N. Andreas, “Fuzzy control: fundamentals, stability and design of fuzzy controllers,” Stud. Fuzziness Soft Comput., vol. 1, no. 1, p. 402, May 2006. https://doi.org/10.1007/3-540-31766-X

How to Cite

APA

Gutiérrez-Rosales, D., Jiménez-Ramírez, J., Rincón-Canalizo, E., Jiménez-Ramírez, O., Aguilar-Torres, D., and Vázquez-Medina, R. (2025). Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers. Ingeniería, 30(2), e22111. https://doi.org/10.14483/23448393.22111

ACM

[1]
Gutiérrez-Rosales, D. et al. 2025. Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers. Ingeniería. 30, 2 (Aug. 2025), e22111. DOI:https://doi.org/10.14483/23448393.22111.

ACS

(1)
Gutiérrez-Rosales, D.; Jiménez-Ramírez, J.; Rincón-Canalizo, E.; Jiménez-Ramírez, O.; Aguilar-Torres, D.; Vázquez-Medina, R. Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers. Ing. 2025, 30, e22111.

ABNT

GUTIÉRREZ-ROSALES, David; JIMÉNEZ-RAMÍREZ, Josue; RINCÓN-CANALIZO, Ezequiel; JIMÉNEZ-RAMÍREZ, Omar; AGUILAR-TORRES, Daniel; VÁZQUEZ-MEDINA, Rubén. Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers. Ingeniería, [S. l.], v. 30, n. 2, p. e22111, 2025. DOI: 10.14483/23448393.22111. Disponível em: https://revistas.udistrital.edu.co/index.php/reving/article/view/22111. Acesso em: 8 dec. 2025.

Chicago

Gutiérrez-Rosales, David, Josue Jiménez-Ramírez, Ezequiel Rincón-Canalizo, Omar Jiménez-Ramírez, Daniel Aguilar-Torres, and Rubén Vázquez-Medina. 2025. “Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers”. Ingeniería 30 (2):e22111. https://doi.org/10.14483/23448393.22111.

Harvard

Gutiérrez-Rosales, D. (2025) “Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers”, Ingeniería, 30(2), p. e22111. doi: 10.14483/23448393.22111.

IEEE

[1]
D. Gutiérrez-Rosales, J. Jiménez-Ramírez, E. Rincón-Canalizo, O. Jiménez-Ramírez, D. Aguilar-Torres, and R. Vázquez-Medina, “Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers”, Ing., vol. 30, no. 2, p. e22111, Aug. 2025.

MLA

Gutiérrez-Rosales, David, et al. “Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers”. Ingeniería, vol. 30, no. 2, Aug. 2025, p. e22111, doi:10.14483/23448393.22111.

Turabian

Gutiérrez-Rosales, David, Josue Jiménez-Ramírez, Ezequiel Rincón-Canalizo, Omar Jiménez-Ramírez, Daniel Aguilar-Torres, and Rubén Vázquez-Medina. “Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers”. Ingeniería 30, no. 2 (August 1, 2025): e22111. Accessed December 8, 2025. https://revistas.udistrital.edu.co/index.php/reving/article/view/22111.

Vancouver

1.
Gutiérrez-Rosales D, Jiménez-Ramírez J, Rincón-Canalizo E, Jiménez-Ramírez O, Aguilar-Torres D, Vázquez-Medina R. Methodology Based on the Squared Error Integral for the Design of Fuzzy Controllers. Ing. [Internet]. 2025 Aug. 1 [cited 2025 Dec. 8];30(2):e22111. Available from: https://revistas.udistrital.edu.co/index.php/reving/article/view/22111

Download Citation

Visitas

449

Dimensions


PlumX


Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
1
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
78%
33%
Days to publication 
457
145

Indexed in

Editor & editorial board
profiles
Loading...