DOI:
https://doi.org/10.14483/23448393.24380Publicado:
2025-11-13Número:
Vol. 30 Núm. 3 (2025): Septiembre-diciembreSección:
EditorialTrends in Artificial Intelligence for Power Grid Automation from an Academic Viewpoint
Palabras clave:
Automation, Artificial intelligence, Electrical substations, Fault detection and diagnosis (en).Descargas
Resumen (en)
Electric power networks are interconnected systems entrusted with transforming, transmitting, and distributing electricity from generation points to the end user. Within this architecture, electrical substations perform the intermediate function of voltage transformation and help to ensure power quality through appropriate control and protection systems. Accordingly, they require automation technologies that enable the continuous monitoring, control, and protection of the infrastructure involved in these processes. Although there are international standards for grid-automation processes—most notably IEC 61850 for communications [1]—, current advances in artificial intelligence (AI) open a window of opportunity to enhance control responses to grid fluctuations.
Referencias
M. Asim Aftab, S. Suhail Hussain, I. Al, and T. S. Ustun, "IEC 61850 based substation automation system: A survey," Int. J. Elect. Power Energy Syst., vol. 120, art. 106008, 2020. https://doi.org/10.1016/j.ijepes.2020.106008
N. Mayadevi, S. VinodChandra, and S. Ushakumari, "A review on expert system applications in power plants," Int. J. Elect. Comp. Eng. (IJECE), vol. 4, no. 1, pp. 116-126, 2014. http://dx.doi.org/10.11591/ijece.v4i1.5025
Clarion Energy Content Directors, "Electric utility AMR deployments on the rise," Renewable Energy World, September 1, 2001. [Online]. Available: https://www.renewableenergyworld.com/energy-storage/long-duration/electric-utility-amr-deployments-on-the-rise/
C. Rudin, D. Waltz, R. N. Anderson, A. Boulanger, A. Salleb-Aouissi, and M. Chow, "Machine learning for the New York City power grid," IEEE Trans. Pattern Analysis Machine Intel., vol. 34, no. 2, pp. 328-345, 2012. http://hdl.handle.net/1721.1/68634
J. V. Fonseca and E. F. M. Ferreira, "Increase of PLC computability with neural network for recovery of faults in electrical distribution substation," presented at IEEE Int. Instrum. Meas. Tech. Conf. (I2MTC), Minneapolis, MN, USA, 2013. https://doi.org/10.1109/I2MTC.2013.6555470
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436–444, 2015. https://doi.org/10.1038/nature14539
E. M. Kuyumani, A. N. Hasan, and T. Shongwe, "A hybrid model based on CNN-LSTM to detect and forecast harmonics: A case study of an Eskom substation in South Africa," Elect. Power Comp. Syst., vol. 51, no. 8, pp. 746-760, 2023. https://doi.org/10.1080/15325008.2023.2181883
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
A partir de la edición del V23N3 del año 2018 hacia adelante, se cambia la Licencia Creative Commons “Atribución—No Comercial – Sin Obra Derivada” a la siguiente:
Atribución - No Comercial – Compartir igual: esta licencia permite a otros distribuir, remezclar, retocar, y crear a partir de tu obra de modo no comercial, siempre y cuando te den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.


2.jpg)












