Marco de desarrollo algorítmico de inteligencia de enjambres aplicada en almacenes

Framework for development algorithmics swarm intelligence to applications in supply warehouse

  • Cesar Leonardo González Pinzón
  • Helbert Eduardo Espitia Cuchango
  • Gerardo Avendaño Prieto
Palabras clave: Warehouse, swarm intelligence, stigmergy, artificial intelligence, agents (en_US)
Palabras clave: Sistema de almacenamiento, inteligencia de enjambres, estigmergia, inteligencia artificial, agentes (es_ES)

Resumen (es_ES)

La inteligencia de enjambres biológicos ha tenido un alto desarrollo en diferentes campos de la ingeniería aplicada, como es el caso de la robótica colaborativa en donde, a través de la bioinspiración, se desarrollan algoritmos que buscan imitar los comportamientos emergentes que suceden en la naturaleza cuando interactúan los integrantes de un enjambre de manera local, generando una inteligencia para resolver una problemática de manera auto organizada. Dentro de las aplicaciones en campos de la ingeniera está el desarrollo de procesos automatizados en ambientes de toda la cadena productiva de las empresas. Es por ello que este articulo busca dar un marco de referencia en la automatización de almacenes de picking, aplicando algoritmos de inteligencia artificial, específicamente la técnica de inteligencia de enjambres, que posibilite el uso de agentes que interactúen de forma colaborativa (cero colisiones, manipulación de objetos, entre otras) y competitiva (menor gasto de energía para el desarrollo de actividades), bajo un esquema de comunicación ambiente – agente, agente.

Resumen (en_US)

Intelligence biological Swarms has had a high development in different fields of applied engineering, as in the case of collaborative robotics where, bio-inspired algorithms seek to mimic emergent behaviors that happen in developed nature, when members of a swarm interact locally to generate intelligence to solve a problem in a self-organized manner. Among the applications in fields of engineering is the development of automated processes in environments throughout the production chain of companies. That is why this article seeks to provide a framework in warehouse automation picking, applying artificial intelligence algorithms, specifically the technique of swarm intelligence, which enables the use of agents that interact collaboratively (zero collisions, handling objects, etc.) and competitive (lower energy expenditure for development activities), under a scheme of communication environment – agent – agent

Descargas

La descarga de datos todavía no está disponible.

Referencias

C. Gros. “Complex and adaptive dynamical systems: a primer”. Springer, Heidelberg (2008)

N. Ay, N. Bertschinger, R. Der, F. Güttler, E. Olbrich. “Predictive information and explorative behavior of autonomous robots”. European Journal of Physics B 63, 329– 339 (2008)

T. Jung, D. Polani, P. Stone. “Empowerment for continuous agent-environment systems”. Adaptive Behaviour 19(1), 16–39 (2011).

M. Lungarella, O. Sporns. “Mapping information flow in sensorimotor networks”. PLoS Comput. Biol. 2(10), e144 (2006).

C. Gershenson. “The implications of interactions for science and philosophy”. In: Foundations of Science, Early View (2013).

M. Prokopenko, F. Boschetti, A.J. Ryan. “An information-theoretic primer on complexity, self-organisation and emergence”. Complexity 15(1), 11–28 (2009)

S. Camazine, J. Deneubourg, L. Franks, N.R., J. Sneyd, G. Theraulaz, E. Bonabeau. “Self-Organization in Biological Systems”. Princeton University Press, Princeton (2003)

W.R. Ashby. “Design for a brain: The origin of adaptive behavior”. 2nd ed. Chapman & Hall, London (1960)

J.P. Van den Berg, W.H.M. Zijm.. “Models for warehouse management: Classification and examples”. 2000.

W. Bauer, O. Ganschar, S. Gerlach. “Development of a Method for Visualization and Evaluation of Production Logistics in a Multi-Variant Production, Variety Management in Manufacturing”. Proceedings of the 47th CIRP Conference on Manufacturing Systems. 2014.

K. Cheng and P. Dasgupta. “Multi-agent Coalition Formation for Distributed Area Coverage”. 2010

M. Hiel, H. Aldewereld, and F. Dignum., Modeling Warehouse Logistics Using Agent Organizations. 2005

S. Keshmiri and S. Payandeh. “A Centralized Framework to Multi-robots Formation Control: Theory and Application”. 2010.

Ch. Gerstner, R. Siegfried, and N. Kratzke. “Agent-Based Simulation of Joint Fire Support Teams” – Collaboration in Network-Centric Warfare Scenarios. 2010.

C.L Cagnina. “Optimización mono y multi-objetivo a través de una heurística de inteligencia colectiva”. Tesis de Doctorado, Doctorado en Ciencias de la Computación, Universidad Nacional de San Luis, Argentina, 2010.

X.S. Yang. "Nature- inspired metaheuristic algorithms”. Luniver Press. Second edition.2010

P. Civicioglu. "Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm". Computers and Geosciences 46, 229-247. 2012

S. Ray and S. Bhattacharjee. “Failure Rate and Repair Time Optimization of Distribution System using Differential Search Algorithm with Distributed Generation back-up”. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014 11th International Conference on.

J. Soares, and C. Lobo, “Day-ahead Distributed Energy Resource Scheduling using Differential Search Algorithm”. Intelligent System Application to Power Systems (ISAP), 2015 18th International Conference on.

P. Faria. "Definition of the Demand Response Events Duration Using Differential Search Algorithm for Aggregated Consumption Shifting and Generation Scheduling". GECAD - Knowledge Eng. & Decision Support Res. Center, Polytech. Inst. of Porto, Porto, Portugal.2015.

H. Kopetz, “Direct versus Stigmergic Information Flow in Systems-of-Systems”. Hermann Kopetz ; Institute of Computer Engineering, Vienna University of Technology, 1040 Vienna, Austria

X. Cui. “A Stigmergy Approach for Open Source Software Developer Community Simulation". Computational Science and Engineering, 2009. CSE '09. International Conference on. Volume 4.

F. Heylighen. "Stigmergy as a generic mechanism for coordination: definition, varieties and aspects". ECCO working paper 2011-12.

M.Tayarani, M. “Inteligencia de enjambres: sociedades para la solución de problemas”. Inteligencia_de_enjambre#Algoritmo_de_optimizaci.C3.B3n_magn.C3.A9tica

J.G. Wardrop, J.G. “Some theoretical aspects of road traffic research”. Palo Alto: Institution of Civil Engineers. (1952).

L. Fratta, M. Gerla, M. & L. Kleinrock. (1973). “The flow deviation method: An approach to store-andforward communication network design”. Networks, 3(2), 97–133. 3. Goffin, J., Gondzio, J., & Vial, R. (1997). Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Mathematical Programming, 76(1), 131–154.

V. Gabrel, A. Knippel, & M. Minoux, M. “Exact Solution of Multicommodity Network Optimization Problems with General Step Cost Functions”. Operations Research Letters, 25(1), 15–23. (1999).

M.A. Boschetti, V. Maniezzo, M. Roffilli & A.B. Röhler. “Matheuristics: Optimization, Simulation and Control. Hybrid Metaheuristics”. Lecture Notes in Computer Science, 5818, 171– 177. (2009).

R.M. Garlick & R.S. Barr. “Dynamic wavelength routing in WDM networks via ant colony optimization”. Ant Algorithms, Lecture Notes in Computer Science, 2463, 250– 255. (2002).

Cómo citar
González Pinzón, C. L., Espitia Cuchango, H. E., & Avendaño Prieto, G. (2015). Marco de desarrollo algorítmico de inteligencia de enjambres aplicada en almacenes. Visión electrónica, 9(2), 194-205. https://doi.org/10.14483/22484728.11028
Publicado: 2015-11-30
Sección
Visión Investigadora

Artículos más leídos del mismo autor/a