Respuesta fisiológica de especies arbóreas al anegamiento. Nuevo conocimiento sobre especies de interés en el arbolado urbano de Bogotá

Physiological responses of tree species to waterlogging condition. New Knowledge about species of interest in the urban trees of Bogota

Palabras clave: adaptation, stress in plants, Fv/Fm, photosynthesis, flood, electrolyte leakage, climate change (en_US)
Palabras clave: adaptación, estrés en plantas, Fv/Fm, fotosíntesis, inundación, fuga de electrolitos, cambio climático (es_ES)

Resumen (es_ES)

Los efectos del calentamiento global en las zonas urbanas hacen preponderante el estudio de especies arbóreas en diferentes condiciones de estrés abiótico, como el anegamiento. En este estudio se analizó el comportamiento fisiológico de seis especies nativas con cuatro niveles de anegamiento, determinando el estado hídrico, el comportamiento fotosintético y la pérdida de electrolitos. De acuerdo a los parámetros evaluados, se recomienda establecer Quercus humboldtii y Ficus tequendamae en zonas con altas precipitaciones y con tendencia al anegamiento debido a la tolerancia que se evidenció. Esto permite que estas zonas en Bogotá mantengan el arbolado urbano bajo escenarios de cambio climático. La estabilidad de las membranas celulares y la eficiencia máxima fotosintética del fotosistema II pueden ser usados como marcadores de tolerancia a condiciones de anegamiento en árboles.

Resumen (en_US)

The global warming effects in urban areas make preponderant the study of tree species at different conditions of abiotic stress, such as waterlogging. Therefore, it is important to conduct research to select species tolerating these environmental conditions and to find physiological markers for these selection processes. In this study, we analyzed the physiological behavior of six native species with four levels of waterlogging, determining the hydric state, the photosynthetic behavior and loss of electrolytes. According to the parameters evaluated, it is recommended to establish Quercus humboldtii and Ficus. tequendamae in areas with high rainfall and with a tendency to waterlogging. This recommendation arises due to the evident tolerance, allowing these areas in Bogota to maintain urban trees under climate change scenarios. The stability of the cell membranes and the maximum photosynthetic efficiency of photosystem II can be used as markers for tolerance under waterlogging conditions in trees.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Darwin Leonel Moreno Echeverry, Jardín Botánico de Bogotá
ingeniero Agrónomo y Magister en Fisiología Vegetal
Diana Carolina Useche Rodríguez, Jardín Botánico de Bogotá José Celestino Mutis
Ecóloga y Magister en Gestión y Conservación de Bosques Tropicales y Biodiversidad
Helber Enrique Balaguera López, Universidad Pedagógica y Tecnológica de Colombia
Ingeniero Agrónomo, Magister y Doctor en Fisiología Vegetal.

Referencias

Aldana, F., García, P. y Fischer, G. (2014). Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) Plants. Revista de la Academia Colombiana de Ciencias Exactas, 38(149), 393-400. https://doi.org/10.18257/raccefyn.114

Ali, H., Kabir, N., Muhammad, A., Raza, M., Ghulam, S., Iqbal, N. y Nadeem, S. (2014). Hautriwaic acid as one of the hepatoprovective constituent of Dodonaea viscosa. Phytomedicine, 21, 131-140. https://doi.org/10.1016/j.phymed.2013.08.019

Almeida, T., Pinto, G., Correia, B., Santos, C. y Concalves, S. (2013). QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber. Plant Physiology and Biochemistry, 73, 274-281. https://doi.org/10.1016/j.plaphy.2013.10.007

Anderson, P. y Pezeshki, R. (2001). Effects of flood pre-conditioning on responses of three bottomland tree species to soil waterlogging. Journal of Plant Physiology, 158, 227-233. https://doi.org/10.1078/0176-1617-00267

Andrade, C., Dázio, K., Santos, M., Silva, D. y Donizeti, J. (2018). Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Scientia Horticulturae, 232, 40-45. https://doi.org/10.1016/j.scienta.2017.12.048

Azhar, A., Makihara, D., Naito, H. y Ehara, H. (2018). Evaluating sago palm (Metroxylon sagu Rottb.) photosynthetic performance in waterlogged conditions: utilizing pulse-amplitude-modulated (PAM) fluorometry as a waterlogging stress indicator. Journal of the Saudi Society of Agricultural Sciences. DOI: https://doi.org/10.1016/j.jssas.2018.05.004

Bailey-Serres, J. y Voesenek, L. (2008). Flooding Stress: Aclimation and Genetic Diversity. Annual Review of Plant Biology, 59, 313-39. https://doi.org/10.1146/annurev.arplant.59.032607.092752

Banach, K., Banach, A., Lamers, L., Kroon, H., Bennicelli, R., Smits, A. y Visser, J. (2009). Differences in flooding tolerance between species from two weland habitats with contrasting hydrology: implications for vegetation development in future flodwater retention areas. Annals of Botany, 103, 341-351. https://doi.org/10.1093/aob/mcn183

Baracaldo, A., Carvajal, R., Romero, A., Prieto, A., García, F., Fischer, G. y Miranda, D. (2014). El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.) cultivado bajo sombrío. Revista Colombiana de Ciencias Hortícolas, 8(1), 92-102. https://doi.org/10.17584/rcch.2014v8i1.2803

Benedetti, L., Ferreira, G. y Fernandes, S. (2015). Chlorophyll a fluorescence in Annona emarginata (Schltdl.) H. Rainer plants subjectd to wáter stress and after rehydration. Scientia Horticulturae, 184, 23-30. https://doi.org/10.1016/j.scienta.2014.12.019

Bhatt, R., Upreti, K., Divya, M., Bath, S., Pavithra, C. y Sadashiva, A. (2015). Interspecific grafting to enhance physiological resilience to floodingstress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17. https://doi.org/10.1016/j.scienta.2014.10.043

Borowski, J. y Pstragowska, M. (2010). Effect of street conditions, including saline aerosol, on growht of the Small-leaved limes. Rocznik Polskiego Towarzystwa Dendrologicznegro, 58, 15-24

Campoe, O., Ianelli, C., Stape, J., Cook, R., Mendes, J. y Vivian, R. (2014). Atlantic forest tree species responses to silvicultural practices in a degraded pasture restoration plantation: From leaf physiology to survival and initial growth. Forest Ecology and Management, 313, 233-242. https://doi.org/10.1016/j.foreco.2013.11.016

Caudle, K. y Maricle, B. (2014). Physiologycal relationship between oil tolerance and flooding tolerance in marsh plants. Environmental and Experimental Botany, 107, 7-14. https://doi.org/10.1016/j.envexpbot.2014.05.003

Cekstere, G., Nikodemus, O. y Osvalde, A. (2008). Toxic impact of the de-icing material to street greenery in Riga, Latvia. Urban Forestry & Urban Greening, 7, 207-217. https://doi.org/10.1016/j.ufug.2008.02.004

Colmer, T., Cox, M. y Voesenek, L. (2006). Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide and ethylene as possible regulators of root acclimatizations. New Phytologist, 170, 767-778. https://doi.org/10.1111/j.1469-8137.2006.01725.x

Corcobado, T., Cubera, E., Juárez, E., Moreno, G. y Solla, A. (2014). Drought events determine performance of Quercus ilex seedlings and increase their suspectibility to Phytophthora cinnamomi. Agricultural and Forest Meteorology, 192-193, 1-8. https://doi.org/10.1016/j.agrformet.2014.02.007

Dat, J., Capelli, N, Folzer., H, Bourgeade, P. y Badot, P. (2004). Sensing and signalling during plant flooding. Plant Physiology and Biochemistry, 42, 273-282. https://doi.org/10.1016/j.plaphy.2004.02.003

Dell´Amico, J., Torrecillas, A., Rodríguez, P., Morales, D. y Sánchez-Blanco, M. (2001). Differences in the effects of flooding the soil early and late in the photoperiod on the water relations of pot-grown tomato plants. Plant Science, 160, 481-487. https://doi.org/10.1016/S0168-9452(00)00409-X

Devkota, A. y Kumar, P. (2010). Effects of different light levels on the growht traits and yield of Centella asiática. Journal of Scientific Research, 5, 226-230.

Du, k., Xu, L., Wu, H., Tu, B. y Zheng, B. (2012). Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance. Flora, 207, 96-106. https://doi.org/10.1016/j.flora.2011.11.002

Duan, H., Ma, Y., Liu, R., Li, Q., Yang, Y. y Song, J. (2018). Effect of combined waterlogging and salinity stresses on euhalophyte Suaeda glauca. Plant Physiology and Biochemistry, 127, 231-237. https://doi.org/10.1016/j.plaphy.2018.03.030

Glenz, C., Lougulescu, I., Kienast, F. y Schalaepfer, R. (2008). Modelling the impact of flooding stress on the growth performance of woody species using fuzzy logic. Ecological Modelling, 218, 18-28. https://doi.org/10.1016/j.ecolmodel.2008.06.008

González, R., Delgado. A., Zabaleta, H. y Herrera, E. (2009). Cytokinin BAP promotes the accumulation of hexoses and increases the activity of phosphoenolpyruvate carboxylase and phosphoenolpturvate carboxikinase during the delay of leaf senescence in wheat. Agrociencia, 43, 379-391.

Guidi, L. y Calatayud, A. (2014). Non-invasive tolos to estimate stress-induced changes in photosynthetic permormance in plants inhabiting Mediterranean areas. Environmental and Experimental Botany, 103, 42-52. https://doi.org/10.1016/j.envexpbot.2013.12.007

Hill, K., Guerin, G., Hill, R. y Watling, J. (2014). Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp. Angustissima along a latitude gradient in southern Australia. Australian Journal of Botany, 62, 657-665. https://doi.org/10.1071/BT14204

Hundecha, Y. y Bárdossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 292, 281-295. https://doi.org/10.1016/j.jhydrol.2004.01.002

Hussain, J., Rehman, N., Al-Harrasi, A., Ali, L., Latif, A. y Abdullah, M. (2013). Essential oil composition and nutrient analysis of selected medicinal plants in sultanate of Oman. Asian Pacific Journal of Tropical Disease, 3(6), 421-428. https://doi.org/10.1016/S2222-1808(13)60095-X

Jim, C. y Zhang, H. (2013). Species diversity and spatial differentiation of old-valuable trees in urban Hong Kong. Urban Forestry & Urban Greening, 12, 171-182. https://doi.org/10.1016/j.ufug.2013.02.001

Kamdem, H., Chabert, P., Tane, P., Noté, O., Feussi, M., Peluso, J., Muller, C., Kikuchi, H., Oshima, Y. y Lobstein, A. (2012). Labdane-type diterpenes and flavones from Dodonaea viscosa. Fitoterapia, 83, 859-863. https://doi.org/10.1016/j.fitote.2012.03.014

King, C., Robinson, J. y Cameron, R. (2012). Flooding tolerance in four “Garrigue” landscape plants: Implications for their future use in the urban landscapes of north-west Europe? Landscape and Urban Planning, 107, 100-110. https://doi.org/10.1016/j.landurbplan.2012.05.005

Kirkpatrick, J., Davison, A. y Daniels, G. (2013). Sinners, scapegoats or fashion victims? Understanding the deaths of trees in the green city. Geoforum, 48, 165-176. https://doi.org/10.1016/j.geoforum.2013.04.018

Kissmann, C., Veiga, E., Eichemberg, M. y Habermann, G. (2014). Morphological effects of flooding on Styrax pohlii and the dynamics of physiological responses during flooding and post-flooding conditions. Aquatic Botany, 119, 7-14. https://doi.org/10.1016/j.aquabot.2014.06.007

Kreuzwieser, J., Hauberg, J., Howell, K., Carroll, A., Rennenberg, H., Havery, A. y Whelan, J. (2009). Differential response of gray poplar leaves and roots underpins stress adaptation during hipoxia. Plant Physiology, 149, 461-473. https://doi.org/10.1104/pp.108.125989

Liu, F., Shahanzari, A. y Andersen, M. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science, 168, 831-836. https://doi.org/10.1016/j.plantsci.2004.10.016

Lucassen, T., Bobbink, R., Smolders, A., Van der Ven, M., Lamers, M. y Roelofs, J. (2002). Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecology, 165, 45-52. https://doi.org/10.1023/A:1021467320647

McPherson, E., Berry, A. y Svan, N. (2018). Performance testing to identify climate-ready trees. Urban Forestry & Urban Greening, 29, 28-39. https://doi.org/10.1016/j.ufug.2017.09.003

Moreno, A. y Fischer, G. (2014). Efectos del anegamiento en los frutales. Una revisión. Temas agrarios, 19(1), 106-23. https://doi.org/10.21897/rta.v19i1.729

Mostafa, A., El-Hela, A., Mohammad, A., Jacob, M., Cutler, S. y Ross, S. (2014). New secondary metabolites from Dodonaea viscosa. Phytochemistry Letters, 8, 10-15. https://doi.org/10.1016/j.phytol.2013.12.008

MyeongWon, O. y Setsuko, K. (2015). Characterization of proteins in soybean roots under flooding and drought stresses. Journal of Proteomics, 114, 161-181. https://doi.org/10.1016/j.jprot.2014.11.008

Nishiyama, Y., Allakhverdiev, I. y Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta, 1757, 742-749. https://doi.org/10.1016/j.bbabio.2006.05.013

Nyman, J. y Lindau, C. (2016). Nutrient availability and flooding stress interact to affect growth and mercury concentration in Taxodium distichum (L.) Rich. seedlings. Environmental and Experimental Botany, 125, 77-86. https://doi.org/10.1016/j.envexpbot.2016.02.004

Ohnishi, N., Allakhverdiev, S.I., Takahashi, S., Higashi, S., Watanabe, M., Nishiyama, Y.y Murata, N. (2005). Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry, 44, 8494-8499. https://doi.org/10.1021/bi047518q

Ordoñez, C. (2015). Adopting public values and climate change adaptation strategies in urban forest management: A reviewand analysis of the relevant literature. Journal of Environmental Management, 164(1), 215-221.

Pardos, J. A. (2010). Respuestas de las plantas al anegamiento del suelo. Investigación agraria. Sistemas y recursos forestales, 13(1), 101-107.

Paz, G. (2012). Genetic variability of common oak (Quercus humboldtii Bonpl.) in the “Macizo colombiano” region. Biotecnología en el sector Agropecuario y Agroindustrial, 10(2), 110-116.

Pérez, C., Villalba, J. y Almanza, M. (2013). Phenology oak (Quercus humboldtii bonpland) in Popayán (Cauca, Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial, 2, 145-154.

Pietrini, F., Chaudhuri, D., Thapliyal, P. y Massacci, A. (2005). Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery. Agriculture, Ecosystem and Environment, 106, 189-198. https://doi.org/10.1016/j.agee.2004.10.007

Quintero, O. y Jaramillo, S. (2012). Germination and rescue in vitro of immature embryos of black cedar (Juglans neotropica Diels). Acta Agronómica, 61(1), 52-60.

Rodríguez, P., Torrecillas, A., Morales, M., Ortuño, M. y Sánchez, M. (2005). Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environmental and Experimental Botany, 53, 113-123. https://doi.org/10.1016/j.envexpbot.2004.03.005

Rodríguez-Gamir, J., Ancillo, G., González, M., Millo, E., Iglesias, D. y Giner, A. (2011). Root signaling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiology and Biochemistry, 49, 636-645. https://doi.org/10.1016/j.plaphy.2011.03.003

Rowshan, V., Farhadi, F. y Najafian, S. (2014). The essential oil of Dodonaea viscosa leaves is allelopathic to rosemary (Rosmarinus officinalis L.). Industrial Crops and Products, 56, 241-245. https://doi.org/10.1016/j.indcrop.2014.03.011

Salazar, S., Francés, F., Blume, T., Francke, T., Bronstert, A. y Blóschl, G. (2012). A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Natural Hazards and Earth System Sciences, 12, 3287-3306. https://doi.org/10.5194/nhess-12-3287-2012

Sepulveda, Y., Diez, M., Moreno, F., León, J. y Osorio, N. (2014). Effects of light intensity and fertilization on the growth of Andean oak seedlings at nursery. Acta Biológica Colombiana, 19(2), 211-220. https://doi.org/10.15446/abc.v19n2.40091

Sghaier-Hammami, B., Valero-Galván, J., Romero-Rodríguez, C, Navarro-Cerrillo, R., Abdelly, C. y Jorrín-Novo, J. (2013). Physiological and proteomics analyses of Holm oak (Quercus ilex subsp. Ballota (Desf.) Samp.) responses to Phytophthora cinnamomi. Plant Physiology and Biochemistry, 71, 191-202. https://doi.org/10.1016/j.plaphy.2013.06.030

Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N. y Feller, U. (2009). Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regulation, 58, 107-117. https://doi.org/10.1007/s10725-008-9356-6

Sistema de Información para la Gestión del Arbolado Urbano (Sigau) (2018). Sistema de Información para la Gestión del Arbolado Urbano. Recuperado de http://www.jbb.gov.co/index.php/sigau

Sjoman, H. y Nielsen, A. (2010). Selecting trees for urban paved sites in Scandinavia– A review of information on stress tolerance and its relation to the requirements of tree planners. Urban Forestry & Urban Greening, 9, 281-293. https://doi.org/10.1016/j.ufug.2010.04.001

Sun, X., Xu, Y., Zhang, Q., Li, X. y Yan, Z. (2018). Combined effect of water inundation and heavy metal son the photosynthesis and physiology of Spartina alterniflora. Ecotoxicology and Environmental Safety, 153, 248-258. https://doi.org/10.1016/j.ecoenv.2018.02.010

Swoczyna, T., Klaji, H., Pietkiewicz, S. y Borowsky, J. (2015). Ability of various tree species to acclimation in urban environments probed with the JIP-test. Urban Forestry and Urban Greening, 14, 544-533. https://doi.org/10.1016/j.ufug.2015.05.005

Tan, X., Xu, H., Khan, S., Equiza, M., Lee, S., Vaziriyeganeh, M. y Zwiazed, J. (2018). Plant water transport and aquaporins in oxygen-deprived environments. Journal of Plant Physiology, 227. DOI: http://doi.org/10.1016/j.jplph.2018.05.003

Tullah, B., Hussain, F. y Ibrar, M. (2010). Allelopathic potential of Dodonaea Viscosa (L.) Jacq. Pakistan Journal of Botany, 42(4), 2383-2390.

Voesenek, L. y Serres, J. (2013). Flooding tolerance: O2 sensing and survival strategies. Current Opinion in Plant Biology, 16(5), 647-653. https://doi.org/10.1016/j.pbi.2013.06.008

Wilby, R. (2008). Constructing climate change scenarios of urban heat island intensity and air quality. Environment and Planning B. Planning and Design, 35, 902-919. https://doi.org/10.1068/b33066t

Xiao-Shan, W. y Jian-Guo, H. (2009). Changes of proline content, activity and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress. Agricultural Sciences in China, 8(4), 431-440. https://doi.org/10.1016/S1671-2927(08)60229-1

Yan, K., Zhao, S., Cui, M., Han, G. y Wen, P. (2018). Vulnerability of photosynthesis and photosystem I in Jerusalem artihoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiology and Biochemistry, 125, 239-246. https://doi.org/10.1016/j.plaphy.2018.02.017

Yetisir, H., Caliskan, M., Soylu, S. y Sakar, M. (2006). Some physiological and growth responses of watermelon (Citrullus lanatus Thunb-Matsum. and Nakai) grafied onto Lagenaria Siceraria to flooding. Environmental and Experimental Botany, 58, 1-8. https://doi.org/10.1016/j.envexpbot.2005.06.010

Zhao, H., Wang, B., Liu, Y., Duan, D. Cai, S. y Sakanishi, A. (2000). Influence of water stress on the lipid physical state of plasma membranes from P. betuloefolia. Bqe leaves. Colloids and Surfaces B: Biointerfaces, 19, 181-185. https://doi.org/10.1016/S0927-7765(00)00153-3

Cómo citar
Moreno Echeverry, D., Useche Rodríguez, D., & Balaguera López, H. (2018). Respuesta fisiológica de especies arbóreas al anegamiento. Nuevo conocimiento sobre especies de interés en el arbolado urbano de Bogotá. Colombia Forestal, 22(1), 51-67. https://doi.org/10.14483/2256201X.13453
Publicado: 2018-12-26
Sección
Artículos de investigación científica y tecnológica