PID controller tuning using bacterial Quorum Sensing (QS)

Sintonización de controlador PID utilizando Quorum Sensing (QS) bacterial

Palabras clave: bio-inspired, closed loop, control, PID, Quorum Sensing, tuning (en_US)
Palabras clave: bio-inspirado, control, lazo cerrado, PID, Quorum Sensing, sintonización. (es_ES)

Resumen (en_US)

Objective: PID controllers are widely used to operate AC motors due to their simplicity and easy implementation. However, adjusting its parameters in search of an optimal scheme can be complex because it requires manual tuning by trial and error. This research aims to implement an optimized tuning scheme through a search based on the idealized behavior of a community of bacteria and its Quorum Sensing (QS).

Methodology: A closed-loop system model with PID control considering disturbances is proposed in order to tune a disturbance-resistant controller. The response of the model is calculated using a search that mimics a simplified model of bacterial behavior. The scheme uses ITSE (Integral Time Squared Error) as the performance index.

Results: The tuning resulting from the proposed scheme was evaluated by simulation and compared with tunings of the same model made by Root Locus and Genetic Algorithms (GA). The results showed a satisfactory response according the design criteria.

Conclusions: Nowadays, PID controllers are still basic industrial control tools, particularly important in motor operation. The performance of these controls depends fundamentally on the design of their gain. In the case of complex plants, additional tools are required to facilitate PID tuning. We propose an intelligent and bio-inspired tuning scheme that demonstrates high performance in laboratory tests.

Financing: University Francisco José de Caldas through the project 1-72-578-18.

Resumen (es_ES)

Objetivo: Los controladores PID son ampliamente utilizados para operar motores AC debido a su simplicidad y fácil implementación. Sin embargo, la sintonización de sus parámetros en busca de un esquema óptimo puede ser compleja debido a que requiere sintonización manual mediante prueba y error. El objetivo de esta investigación es implementar un esquema de ajuste optimizado mediante una búsqueda basada en el comportamiento idealizado de una comunidad de bacterias y su detección de quórum (Quorum Sensing, QS).

Metodología: Se plantea el modelo del sistema en lazo cerrado con control PID considerando las perturbaciones con el objetivo de sintonizar un controlador resistente a ellas. La respuesta del modelo se calcula mediante una búsqueda que imita un modelo simplificado de comportamiento bacterial. El esquema utiliza el ITSE (Integral Time Squared Error) como indice de desempeño.

Resultados: La sintonización mediante el esquema propuesto fue evaluada mediante simulación y comparada con sintonizaciones del mismo modelo realizadas mediante Root Locus y Algoritmos Genéticos (GA). Los resultados mostraron una respuesta satisfactoria frente a los criterios de diseño.

Conclusiones: Los controladores PID siguen siendo hoy en día herramientas básicas de control industrial, particularmente importantes en el manejo de motores. El desempeño de estos controles depende fundamentalmente del diseño de su ganancia. En el caso de plantas complejas se requiere de herramientas adicionales que faciliten la sintonización del PID. Nosotros proponemos un esquema de sintonización inteligente y bio-inspirado que demuestra un alto desempeño en pruebas de laboratorio.

Financiamiento: Universidad Distrital Francisco José de Caldas a través del proyecto 1-72-578-18.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Fredy Hernán Martínez Sarmiento, Universidad Distrital Francisco José de Caldas

Ph.D en Ingeniería Sistemas y Computación, Especialista en Gestión de Proyectos de Ingeniería, Ingeniero Electricista. Profesor en la Universidad Distrital Francisco José de Caldas

Diego Mauricio Acero Soto, Universidad Pedagógica Nacional

Ingeniero Electrónico. Profesor en la Universidad Pedagógica Nacional

Referencias

REFERENCES

Abhishek, V. (2015). Stability analysis and design of algorithmic tuned PID controller for bio-reactor. International Journal of Research in Engineering and Technology, 4(1), 28-35. https://doi.org/10.15623/ijret.2015.0404006

Ali, M., Afandi, A., Parwati, A., Hidayat, R., and Hasyim, C. (2019). Design of water level control systems using PID and ANFIS based on firefly algorithm. Journal of Electrical Engineering, Mechatronic and Computer Science, 2(1), 9-14. https://doi.org/10.26905/jeemecs.v2i1.2804

Arbulú, M., Martínez, F., and Montiel, A. (2015). Metodología para el uso de la técnica de localización de raíces en la planeación de rutas para robots móviles. Tecnura, 19(46), 49-64. https://doi.org/10.14483/udistrital.jour.tecnura.2015.4.a04

Armin, M., Roy, P., Sarkar, S., and Das, S. (2018). LMI-based robust PID controller design for voltage control of islanded microgrid. Asian Journal of Control, 20(5), 2014-2025. https://doi.org/10.1002/asjc.1710

Ataslar-Ayyıldız, B., and Karahan, O. (2018). Tuning of fractional order PID controller using cs algorithm for trajectory tracking control. In 6th international conference on control engineering information technology (CEIT 2018) (p. 1-6). https://doi.org/10.1109/CEIT.2018.8751895

Chanti, D., Santosh, D., and Padma, R. (2017). Tuning of PID controllers for unstable systems using direct synthesis method. Indian Chemical Engineer, 59(3), 215-241. https://doi.org/10.1080/00194506.2016.1255570

Chen, M.-R., Zeng, G.-Q., and Xie, X.-Q. (2018). Population extremal optimization-based extended distributed model predictive load frequency control of multi-area interconnected power systems. Journal of the Franklin Institute, 355(17), 8266-8295. https://doi.org/10.1016/j.jfranklin.2018.08.020

Febina, P., Sunil, T., and Jacob, J. (2018). GA tuned two degree of freedom PID controller for time delay systems. International Journal of Intelligent Systems Technologies and Applications, 17(1), 123-135. https://doi.org/10.1504/IJISTA.2018.10012889

Habibi, H., Rahimi, H., and Howard, I. (2018). Adaptive PID control of wind turbines for power regulation with unknown control direction and actuator faults. IEEE Access, 6(1), 37464-37479. https://doi.org/10.1109/ACCESS.2018.2853090

Hettrick, H., and Todd, J. (2019). In-flight adaptive PID sliding mode position and attitude controller. In IEEE aerospace conference (p. 1-9). https://doi.org/10.1109/AERO.2019.8741991

Jacinto, E., Giral, M., and Martínez, F. (2016). Multi-agent navigation model based on bacterial quorum sensing. Tecnura, 20(47), 29-38. https://doi.org/10.14483/udistrital.jour.tecnura.2016.1.a02

Jagatheesan, K., Anand, B., Dey, N., and Ashour, A. (2018). Effect of SMES unit in AGC of an interconnected multi-area thermal power system with aco-tuned PID controller. In (p. 164-185). IGI Global.

https://doi.org/10.4018/978-1-5225-4151-6.ch007

Jayaraman, L., Vijayakumar, K., Nandagopal, V., and Rameshkumar, K. (2018). Implementation of ILC based gain scheduled PID controller for non linear spherical tank level process. International Journal of Pure and Applied Mathematics, 118(18), 4637-4644.

Martínez, F., Hernández, C., and Acero, D. (2017). Segmentación de imagen por color basado en quorum sensing bacterial. Tecnura, 20(2016), 55-63.

Martínez, F., Rendón, A., and Arbulú, M. (2018). An algorithm based on the bacterial swarm and its application in autonomous navigation problems. Lecture Notes in Computer Science, 10941(1), 304-313. https://doi.org/10.1007/978-3-319-93815-8_30

Patil, B., Waghmare, L., and Uplane, M. (2019). Discrete sliding mode controller action with pid sliding surface for non linear plant along with changing set point. In 3rd international conference on computing methodologies and communication (ICCMC 2019) (p. 177-181). https://doi.org/10.1109/ICCMC.2019.8819864

Ramirez, J., López, J., and noz, N. M. (2018). Particle swarm metaheuristic applied to the optimization of a PID controller. Contemporary Engineering Sciences, 11(67), 3333-3342. https://doi.org/10.12988/ces.2018.87350

Ravi, C., and Padma, R. (2018). Design of PID controllers for unstable systems using multiple dominant poleplacement method. Indian Chemical Engineer, 60(4), 356-370. https://doi.org/10.1080/00194506.2017.1363673

Sanghavi, B., Tejaswini, C., and Venkateshappa, V. (2019). DC/DC boost converter using DSP controller for fuel cell. Perspectives in Communication, Embedded-System and Signal-Processing, 2(10), 248-251.

Tasoren, A., Orenbas, H., and Sahin, S. (2018). Analyze and comparison of different PID tuning methods on a brushless DC motor using Atmega328 based microcontroller unit. In 6th international conference on control engineering information technology (CEIT 2018) (p. 1-4). https://doi.org/10.1109/CEIT.2018.8751768

Vanavil, B., Krishna, K., and Seshagiri, A. (2015). Improved PID controller design for unstable time delay processes based on direct synthesis method and maximum sensitivity. International Journal of Systems Science, 46(8), 1349-1366.

Wang, B., Mihalec, M., Gong, Y., Pompili, D., and Yi, J. (2018). Disturbance observer-based motion control of small autonomous underwater vehicles. In Dynamic systems and control conference (ASME 2018) (p. 1-8). https://doi.org/10.1115/DSCC2018-9200

Wang, Z., Wang, L., Yun, Z., and Wang, J. (2018). Temperature control based on fuzzy-PID algorithm for the blackbody radiation source. In IEEE international conference on mechatronics and automation (ICMA 2018) (p. 797-802). https://doi.org/10.1109/ICMA.2018.8484315

Cómo citar
Martínez Sarmiento, F. H., & Acero Soto, D. M. (2020). Sintonización de controlador PID utilizando Quorum Sensing (QS) bacterial. Tecnura, 24(64), 13 - 22. https://doi.org/10.14483/22487638.16530
Publicado: 2020-04-01
Sección
Investigación

Artículos más leídos del mismo autor/a

1 2 3 > >>