DOI:
https://doi.org/10.14483/2256201X.15557Publicado:
01-07-2020Número:
Vol. 23 Núm. 2 (2020): Julio-diciembreSección:
Artículos de investigación científica y tecnológicaEstimación de volumen de Abies religiosa (Kunth) Schltdl. & Cham. en diferentes entidades federativas de México
Volume estimation of Abies religiosa (Kunth) Schltdl. & Cham. In different states of Mexico
Palabras clave:
Trees, goodness of fit, dasometric data, precision (en).Palabras clave:
Árboles, Bondad de ajuste, datos dasométricos, precisión (es).Descargas
Referencias
Akindele, S. O. y LeMay, V. M. (2006). Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management, 226(1), 41-48.
https://doi.org/10.1016/j.foreco.2006.01.022
Barrios, A., López, A. M. y Nieto, V. (2014). Predicción de volúmenes comerciales de Eucalyptus grandis a través de modelos de volumen total y de razón. Colombia Forestal, 17(2), 137-149.
https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a01
Corral-Rivas, S. y Návar-Cháidez, J. D. (2009). Comparación de técnicas de estimación de volumen fustal total para cinco especies de pino de Durango, México. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 15(1), 5-13.
Crecente-Campo, F., Corral-Rivas, J., Vargas-Larreta, B. y Wehenkel, C. (2014). Can random components explain differences in the height–diameter relationship in mixed uneven-aged stands? Annals of Forest Science, 71(1), 51-70.
https://doi.org/10.1007/s13595-013-0332-6
Cruz-Cobos, F., Mendía-Santana, R., Jiménez-Flores, J. Nájera-Luna, J. A. y Cruz-García, F. (2016). Ecuaciones de volumen para Arbutus spp. (madroño) en la región de Pueblo Nuevo, Durango. Investigación y Ciencia, 24(68), 41-47.
Da Cunha, T. A. y Guimarães-Finger, C. A. (2009). Modelo de regresión para estimar el volumen total con corteza de árboles de Pinus taeda L. en el sur de Brasil. Revista Forestal Mesoamericana Kurú, 6(16), 1-15.
Diéguez-Aranda, U., Barrio-Anta, M., Castedo-Dorado, F. y Álvarez-González, J. (2005). Relación altura-diámetro generalizada para masas de Pinus sylvestris L. procedentes de repoblación en el noroeste de España. Forest Systems, 14(2), 229-241.
https://doi.org/10.5424/srf/2005142-00886
Diéguez-Aranda, U., Rojo-Alboreca, A., Castedo-Dorado, F., Álvarez-González, J. G., Barrio-Anta, M., Crecente-Campo, F., … Sánchez-Rodríguez, F. (2009). Herramientas silvícolas para la gestión forestal sostenible en Galicia. Galicia, España. Dirección Xeral de Montes, Consellería de Medio Rural.
www.usc.es/.../Herramientas_silvicolas_para_la_gestion_forestal_sostenible_en_galicia
Fang, Z. y Bailey, R. L. (2001). Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. Forest Science, 47(3), 287-300.
https://doi.org/10.1093/forestscience/47.3.287
Fernández, E., Fassola, E. y García, M. (2011). Ecuación de volumen total para Populus deltoides de plantaciones del Bajo Delta del Paraná. RIA. Revista de Investigaciones Agropecuarias, 37(2), 172-179.
Guzmán-Santiago, J. C., Aguirre-Calderón, O. A., González-Tagle, M. A., Treviño-Garza, E. J., Jiménez-Pérez, J., Vargas-Larreta, B., … De los Santos-Posada, H. M. (2019). Relación altura-diámetro para Abies religiosa Kunth Schltdl. & Cham. en el centro y sur de México. Revista Mexicana de Ciencias Forestales, 10(52), 100-120.
https://doi.org/10.29298/rmcf.v10i52.483
Harvey, A. C. (1976). Estimating regression models whit multiplicative heteroscedastiticity. Econometrica, 44, 461-465.
https://doi.org/10.2307/1913974
Hernández-Ramos, J., Hernández-Ramos, A., García-Magaña, J., García-Cuevas, X., García-Espinoza, G., Muñoz-Flores, H., … Olvera-Delgadillo, E. (2017a). Sistema compatible de ahusamiento-volumen comercial para plantaciones de Pinus greggii Engelm. en Hidalgo, México. Revista Mexicana de Ciencias Forestales, 8(39), 59-70.
https://doi.org/10.29298/rmcf.v8i39.43
Hernández-Ramos, J., Santos-Posadas, H. M., Valdéz -Lazalde, J. R., Tamarit-Urias, J. C., Ángeles-Pérez, G., Hernández-Ramos, A., … Peduzzi, A. (2017b). Estimación del volumen comercial en plantaciones de Eucalyptus urophylla con modelos de volumen total y de razón. Agrociencia, 51(5), 561-580.
Hernández-Ramos, J., Hernández-Ramos, A., García-Cuevas, X., Tamarit-Urías, J. C., Martínez-Ángel, L. y García-Magaña, J. (2018). Ecuaciones de volumen total y de razón para estimar el volumen comercial de Swietenia macrophylla King. Colombia Forestal, 21(1), 34-46.
https://doi.org/10.14483/2256201X.11965
Honorato-Salazar, J. A. (2011). Modelos volumétricos fustales para Acrocarpus fraxinifolius Wight & Arn. en plantaciones agroforestales de la Sierra Norte de Puebla. Revista Mexicana de Ciencias Forestales, 2(6), 55-71.
https://doi.org/10.29298/rmcf.v2i6.574
Huang, S., Titus, S. y Wiens, D. (1992). Comparison of nonlinear height-diameter functions for major Alberta tree species. Canadian Journal of Forest Research, 22, 1297-1304.
https://doi.org/10.1139/x92-172
Instituto Nacional de Estadística y Geografía (2016). Compendio de información geográfica.
www.internet.contenidos.inegi.org.mx/contenidos/Productos/...2016/702825087357.pdf
Kitikidou, K., Milios, E. y Katsogridakis, S. (2017). Meta-analysis for the volume of Pinus sylvestris in Europe. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(1), 23-34.
https://doi.org/10.5154/r.rchscfa.2015.11.052
Mayaka, T. B., Eba'a-Atyi, R. y Momo, S. T. (2017). Construction of multispecies allometric equations: Is there a statistical palliative for destructive tree sampling? Journal of Tropical Forest Science, 29(3), 282-296.
https://doi.org/10.26525/jtfs2017.29.3.282296
Neter, J., Kutner, M. H., Nachtsheim, C. J. y Wasserman, W. (1996). Applied Linear Statistical Models (4ta ed.). Nueva York: McGraw-Hill.
Özçelik, R. y Göçeri, M. F. (2015). Compatible merchantable stem volume and taper equations for Eucalyptus sp. plantations in the Eastern Mediterranean Region of Turkey. Turkish Journal of Agriculture and Forestry, 39(6), 851-863.
https://doi.org/10.3906/tar-1501-27
Parresol, B. R., Hotvedt, J. E. y Cao, Q. V. (1987). A volume and taper prediction system for bald clonal grouping. Forest Ecology and Management, 432, 30-39. https://doi.org/10.1016/j.foreco.2018.08.051
Pineda-López, M. D. R., Ortega-Solís, R., Sánchez-Velásquez, L. R., Ortiz-Ceballos, G. y Vázquez-Domínguez, G. (2013). Estructura poblacional de Abies religiosa (Kunth) Schltdl. et Cham., en el ejido el conejo del Parque Nacional Cofre de Perote, Veracruz, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(3), 375-385.
https://doi.org/10.5154/r.rchscfa.2012.11.058
Prodan, M., Peters, R., Cox, F. y Real, P. (1997). Mensura Forestal. San José, Costa Rica: GTZ; IICA. Serie Investigación y Educación en Desarrollo Sostenible.
Quiñonez-Barraza, G., De los Santos-Posadas, H. M., Cruz-Cobos, F., Velázquez-Martínez, A., Ángeles-Pérez, G. y Ramírez-Valverde, G. (2015). Índice de sitio con polimorfismo complejo para masas forestales de Durango, México. Agrociencia, 49(4), 439-454.
Ramos-Uvilla, J. A., García-Magaña, J. J., Hernández-Ramos, J., García-Cuevas, X., Velarde-Ramírez, J. C., Muñoz-Flores, H. J., … García Espinoza, G. G. (2014). Ecuaciones y tablas de volumen para dos especies de Pinus de la Sierra Purhépecha, Michoacán. Revista Mexicana de Ciencias Forestales, 5(23), 92-109.
https://doi.org/10.29298/rmcf.v5i23.344
Salas, C., Nieto, L. y Irisarri, A. (2005). Modelos de volumen para Pinus pinaster Ait. en la Comarca del Baixo Miño, Galicia, España. Quebracho-Revista de Ciencias Forestales, 12, 11-22.
SAS Institute Inc. (2008). SAS/STAT® 9.2 User’s Guide Second Edition. Raleigh, NC, EE. UU.: SAS Institute Inc. s/p.
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm
Schumacher, F. X. y Hall, F. S. (1933). Logarthmic expression of timbertree volume. Journal Agriculture Research, 47(9), 719-734.
Simental-Cano, B., López-Sánchez, C. A., Wehenkel, C., Vargas-Larreta, B., Álvarez-González, J. G. y Corral-Rivas, J. J. (2017). Species-specific and regional volume models for 12 forest species in Durango, Mexico. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 23(2), 155-171.
https://doi.org/10.5154/r.rchscfa.2016.01.004
Sistema Biométrico Forestal (SiBiFor) (2016). Biblioteca digital del sistema biométrico para la planeación del manejo forestal sustentable de los ecosistemas con potencial maderable en México.
http://fcfposgrado.ujed.mx/sibifor/inicio/buscar.php.
Spurr, S. H. (1952). Forest inventory. Nueva York: John Wiley and sons.
Tang, X., Pérez-Cruzado, C., Torsten, V., Fehrmann, L., Álvarez-González, J. G. y Kleinn, C. (2016). Development of a compatible taper function and stand-level merchantable volume model for Chinese fir plantations. Forestry, 11(1), 1-15.
https://doi.org/10.1371/journal.pone.0147610
Tapia, J. y Návar, J. (2011). Ajuste de modelos de volumen y funciones de ahusamiento para Pinus pseudostrobus Lindl. en bosques de pino de la Sierra Madre Oriental de Nuevo León, México. Foresta Veracruzana, 13(2), 19-28.
Tlaxcala-Méndez, R. M., De los Santos-Posadas, H. M., Hernández-De la Rosa, P. y López-Ayala, J. L. (2016). Variación del factor de forma y el ahusamiento en procedencias de cedro rojo (Cedrela odorata L.). Agrociencia, 50(1), 89-15.
Valencia-Manzo, S., Trujillo-Gómez, S. A., Cornejo-Oviedo, E. H., Flores-López, C., Díaz-Balderas, J. A. y González-López, H. D. (2017). Ecuación de pressler para estimar volumen de fuste en árboles de Pinus patula Schl. et Cham. var. longepedunculata Look. Foresta Veracruzana, 19(1), 29-34.
Vanclay, J. K. (1994). Modelling forest growth and yield: applications to mixed tropical forests. School of Environmental Science and Management Papers.
http://epubs.scu.edu.au/cgi/viewcontent.cgi?article=1538&context=esm_pubs
Vargas-Larreta, B., Corral-Rivas, J., Aguirre-Calderón, O. A., López-Martínez, J. O., De los Santos-Posadas, H. M., Zamudio-Sánchez, F. J., … Aguirre-Calderón, C. G. (2017). SiBiFor: Forest Biometric System for forest management in Mexico. Serie Ciencias Forestales y del Ambiente, 23(3), 437-455.
https://doi.org/10.5154/r.rchscfa.2017.06.040
Vásquez-Bautista, N., Zamudio-Sánchez, F. J., Alvarado-Segura, A. A. y Romo-Lozano, J. L. (2016). Forest biometric models in Hidalgo, Mexico: State of the art. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 351-367.
https://doi.org/10.5154/r.rchscfa.2015.09.043
Vásquez-Fabian, S. A., Rodríguez-Ortiz, G., Enríquez-del Valle, J. R., Campos-Angeles, G. V. y Santana-Flores, A. (2017). Volumen y biomasa aérea de Pinus pseudostrobus y P. teocote del sur de Oaxaca. Revista Mexicana de Agroecosistemas, 4(2), 164-172.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Recibido: 13 de noviembre de 2019; Aceptado: 21 de mayo de 2020
Resumen
Las variables diámetro y altura son factores indispensables en inventarios forestales para determinar el volumen que se almacena en el bosque. El objetivo de esta investigación fue generar una ecuación para ocho entidades federativas que permita estimar de forma precisa el volumen maderable de Abies religiosa en el centro y sur del país. Se utilizaron 2.747 datos para ajustar ecuaciones de volumen rollo total árbol, volumen de ramas y volumen total árbol (vrta, vramas y vta). Para la selección del mejor modelo se fijaron los siguientes criterios: coeficiente de determinación ajustada, sesgo, error medio; así como el análisis gráfico y numérico de los residuales. Debido a la falta de información de las ramas para las entidades de Tlaxcala y Veracruz solo se obtuvo el volumen rollo total árbol. La bondad de ajuste generada por las ecuaciones es confiable, ya que explican más del 93 % a la variable dependiente, los errores son menores a 0.47 m. Estas expresiones son una herramienta útil que podrá ser aplicada por los técnicos forestales en distintos rodales en la zona de estudio.
Palabras clave:
árboles, bondad de ajuste, datos dasométricos, precisión.Abstract
Diameter and height are crucial parameters in forest inventories to determine the volume that is stored in the forest. The objective of this research was to generate an equation for eight federative entities that allows an accurate estimate of the timber volume of Abies religiosa in the center and south of the country. Around 2,747 trees were used to adjust equations of total tree roll volume, branch volume and total tree volume (vrta, vramas and vta). The following criteria were set for the selection of the best model; adjusted coefficient of determination, bias, mean error; as well as the graphical and numerical analysis of the residuals. Due to the lack of information on the branches, for Tlaxcala and Veracruz states only the total tree roll volume was obtained. The goodness of fit generated by the equations is reliable, since it explains more than 93% to the dependent variable, the errors are less than 0.47 m. These expressions are useful tools that can be applied by forestry technicians in different stands in the study area.
Keywords:
trees, goodness of fit, dasometric data, precision.INTRODUCCIÓN
La información dasométrica obtenida mediante un inventario forestal permite tomar una serie de decisiones para el manejo de la masa arbórea en un determinado periodo para el silvicultor, principalmente para la estimación de volumen (Corral-Rivas y Návar-Chaidez, 2009). La estimación de existencias reales maderables es una actividad importante para el técnico o propietario ya que, además del volumen total del árbol, también es necesario conocer su distribución comercial (en rollo, aserrado, trituración, entre otros) (Diéguez-Aranda et al., 2009).
Estas ecuaciones aditivas surgen del volumen fustal y de ramas, como parámetros de variables resultantes del diámetro normal a 1.30 m y la altura total (Kitikidou et al., 2017). En este sentido, la modelación forestal posee la herramienta esencial sobre la cuantificación de los productos generados; esta permite inferir en el crecimiento y desarrollo de las masas a través de la aplicación de tratamientos silvícolas con la intención de mejorar la calidad de cada uno de los individuos de la masa forestal (Quiñonez-Barraza et al., 2015; Valencia-Manzo et al., 2017).
México contaba hasta hace unas décadas con pocas ecuaciones de crecimiento, sobre todo ecuaciones de volumen para distintas especies de regiones de bosques templados, selvas y regiones tropicales. Sin embargo, partes de esas ecuaciones en la actualidad están obsoletas; en la mayoría de los casos una sola ecuación solía ser utilizada para varias especies (Cruz-Cobos et al., 2016). De frente a esta dificultad, distintas instituciones han colaborado y mostrado interés para desarrollar investigaciones con el objetivo de generar herramientas prácticas, como los modelos biométricos, para apoyar a los manejadores forestales en la obtención de mejores estimaciones de los rendimientos maderables de sus bosques, así como en la toma de decisiones (Vargas-Larreta et al., 2017).
La presente investigación tuvo como objetivo generar una ecuación por entidad federativa que permita estimar de forma precisa el volumen maderable de Abies religiosa en el centro y sur del país, misma que fungirá como una herramienta para los técnicos forestales.
MATERIALES Y MÉTODOS
Área de estudio
Los sitios de estudio se llevaron a cabo en ocho entidades federativas, con sus respectivas unidades de manejo forestal (Umafor): Guerrero (1203), Puebla (2101, 2105 y 2108), Tlaxcala (2901 y 2902), Veracruz (3004 y 3012), Michoacán (1604, 1605, 1607 y 1608), Jalisco (1404, 1406 y 1410), Hidalgo (1303) y Estado de México (1503, 1507, 1508, 1509 y 1510) (Instituto Nacional de Estadística y Geografía, 2016). Los datos de todas las Umafores en cada entidad se agruparon con la finalidad de llevar a cabo los ajustes.
Tamaño de muestra
La información de campo se obtuvo de 21 Umafor, con un total de 2747 árboles; mismos que provienen de zonas de aprovechamiento, así como y de áreas no autorizadas para el derribo. Para el primer caso se utilizó el muestreo destructivo consistió en derribar, seccionar y medir los árboles; mientras que para las áreas no autorizadas las mediciones se hicieron en árboles en pie de manera escalonada y con forcípula láser Haglof Digitech Professional para medir el diámetro a distintas alturas; considerando diferentes categorías diamétricas (tabla 1). En cada sitio el diámetro normal (Dn) fue medido en pie con una cinta diamétrica alemana Forestry Suppliers, Inc. P.O. BOX 8397 y forcípula Haglof Mantax Blue, medido a 1.30 sobre el nivel del suelo; y la altura total (Ht) con el Hipsómetro Haga®; en este caso, los individuos derribados fueron medidos con el flexómetro Uline Accuc-Lock H-1766.
Para cada árbol se registraron las siguientes variables: diámetro normal medido a 1.3 m sobre el nivel del suelo (Dn, cm), altura total (Ht, en metros) y diámetros con corteza a distintas alturas (di, en cm) a lo largo del fuste con respecto al suelo (hi, en m). Las primeras mediciones se realizaron en dos secciones de 0.30 m por encima del tocón; posterior a eso, la siguiente sección fue en el diámetro normal (1.30 m); y después las secciones fueron cortadas de manera constante a 2.54 m de longitud hasta llegar a la punta del árbol. De igual forma, se midieron todas las ramas mayores o iguales a 5 cm, mismas que fueron seccionadas a distintas longitudes (dri en cm). Tanto los árboles derribados, como los que se midieron en pie, fueron cubicados por secciones, en donde el volumen de cada sección de fuste y de rama se estimó mediante la fórmula de Smalian; las puntas se cubicaron mediante la ecuación del cono. El volumen total del árbol se estimó sumando el volumen del fuste y de las ramas (Vargas-Larreta et al., 2017).
Ecuaciones ajustadas
Se ajustaron seis ecuaciones para calcular la relación entre el volumen rollo total árbol y una ecuación para estimar el volumen de ramas (vrta, vramas); teniendo como variables independientes el diámetro y la altura total. Posteriormente, se realizó un ajuste simultáneo para estimar el volumen total de los árboles (vta) de cada una de las entidades federativas; que consiste en la suma de las ecuaciones anteriores (tabla 2). Sin embargo; en las regiones de Tlaxcala y Veracruz la ecuación de ramas (7) se excluyó, ya que no hubo información suficiente.
En la tabla 2 se muestran las ecuaciones utilizadas:
Método de ajuste y selección de modelos
Los modelos ajustados fueron de tipo no lineal, ya que desde un punto biológico estas ecuaciones tienen un comportamiento más consistente en la curva (Huang et al., 1992). La estimación de los parámetros se usó el método de mínimos cuadros ordinarios (OLNS), ya que esta técnica permite minimizar los errores de los parámetros. Para evitar la convergencia de los parámetros a un óptimo local se usaron los valores obtenidos por Vargas-Larreta et al. (2017) . Las ecuaciones fueron ajustadas con el software SAS/ETSâ (SAS Institute Inc. 2008). El análisis de la capacidad de ajuste de los modelos se basó en comparaciones numéricas y gráficas.
La expresión de los estadísticos de bondad de ajustes es la siguiente:
Donde: R2adj= coeficiente de determinación ajustada, REMC= raíz del error medio cuadrático, (ē) = Sesgo. p= es el número de parámetros a estimar, n= es el tamaño de muestra, Yi= son los valores observados, Ŷi =son los valores predichos.
Además, se hizo un análisis gráfico de los residuos frente a los valores predichos de altura total, ya que este procedimiento se considera una de las maneras más eficientes de evaluar la capacidad de ajuste de un modelo (Diéguez-Aranda et al., 2005; Guzmán-Santiago et al., 2019) al permitir detectar posibles tendencias sistemáticas de los datos, así como para seleccionar factores de ponderación si fuesen necesarios debido a la presencia de heterocedasticidad (Neter et al., 1996).
Corrección de heterocedasticidad
Para garantizar las estimaciones de los parámetros se corrigió el efecto de heterocedasticidad (varianza no constante), para lo cual se realizó una ponderación aplicando los mismos pesos a la inversa de la varianza de cada observación. La varianza desconocida se estimó con la función potencial . Los valores de γ y del exponente k se optimizaron empleando los errores del modelo ajustado sin pesos como variable dependiente en el modelo potencial de varianza del error (Harvey, 1976). Finalmente, el peso considerado fue 1/D2 para la ecuación de volumen de las ramas con corteza y 1/D2 * H para la ecuación de volumen rollo total árbol.
RESULTADOS
Ecuaciones ajustadas
Estadísticamente el modelo de Spurr Potencial (Ec. 1) fue ligeramente superior que el resto de las ecuaciones. Sin embargo, en el análisis gráfico causó algunos problemas de precisión. Por lo anterior, en las entidades de Jalisco, México y Puebla se seleccionó la ecuación de Schumacher y Hall (1933) (Ec. 3); mientras que en Guerrero, Hidalgo, Michoacán, Tlaxcala y Veracruz se optó por la ecuación 1, ya que mostró excelentes resultados. En este sentido, la ecuación 3 en el volumen de rollo total árbol (vrta) presentó un sesgo que va de 0.028 a 0.034 m3, con una raíz de error medio cuadrático (REMC) menor a 0.44 m3, así como un coeficiente de determinación ajustada (R2 adj) de 96 %, respectivamente (tabla 3).
Para el volumen de ramas (vramas), el sesgo es menor a 0.001 m3; mientras que la REMC promedio corresponde a 0.08 m3; además, presentó una R2 adj superior a 0.44 (tabla 4). Como consecuencia en el volumen total árbol (vta) se obtuvo un sesgo promedio de 0.033 m3, donde la bondad de ajuste es aceptable estadísticamente (REMC < a 0.45 m3; R2 adj =96 %). Para el caso del modelo 1, el sesgo se encuentra entre -0.008 y 0.01 m3, mismo que muestra una REMC menor a 0.45 m3, y un 93 % de la varianza total de la variable explicada en el vrta. Además, se observa en el volumen de ramas (vramas), que el sesgo está por debajo de -0.002, con errores que oscila entre 0.04 y 0.12 m3 (R2 adj > a 0.25), y que por consecuencia se refleja en el Vta la capacidad del modelo de explicar a la variable (tabla 5).
Comparación entre entidad federativa
En la figura 1 se aprecia las curvas de ajuste de la ecuación 1 sobre los datos de campo de cada una de las entidades, en la que en los sitios de Guerrero (a) e Hidalgo (b) se obtuvieron categorías diamétricas hasta de 70 cm; así como un volumen total máximo de 7 y 6 metros cúbicos (m3), aproximadamente. Para la entidad de Michoacán (e) se obtuvo información de volumen de 13 m3 con categorías máximas de 95 cm. Por otra parte, en Tlaxcala (g) el volumen rollo total árbol (vrta) fue de 5.7 m3, ligeramente superior en que Veracruz (h), en la cual generó un volumen 3.6 m3.
La ecuación 3 estima una buena proyección sobre los datos provenientes de la Ciudad de México (d) y Puebla (f), en donde ambos obtuvieron volumen de 12.3 m3 con categorías de hasta 95 cm; mientras que en Jalisco (c) hubo una menor cantidad volumétrica (6.7 m3) con diámetros menores a 80 cm. En las ciudades de México, Puebla y Michoacán se aprecia la mayor concentración en volumen maderable; además, en Hidalgo y Tlaxcala se observa que no existe una marcada diferencia a pesar de que el segundo sitio (g) no contiene información de ramas; esto quizás se deba por la cantidad de muestras obtenidas.
Evolución del sesgo
En la figura 2 se observa que el sesgo generado por la ecuación 1 para las entidades de Guerrero (a) y Michoacán (e) se encuentra cercano a cero en diámetros que van de 5 a 45 cm; mientras que en datos de 50 a 63 cm el modelo subestima con un grado de error más notable; a partir de diámetros superiores a 64 se observa un marcado grado de sobreestimación. En el caso de Hidalgo (b) el grado de error se observa con más claridad en categorías mayores de 40 cm, mientras que en Tlaxcala (g) tiene una distribución normal (cercano a cero) en diámetros de 5 a 59 cm, y en categorías mayores a 60 cm el modelo tiende a subestimar la información volumétrica (vrta), sobre todo en diámetro 64 ya que alcanza un error de 0.62 m3.
Para el caso de Veracruz (h) el sesgo es prácticamente nulo en árboles con categorías menores a 49 cm. Sin embargo, en diámetros de 50 a 59 cm se observa una ligera sobreestimación. Los errores con subestimación notable se presentan en los datos mayores a 60 cm.
De igual forma se comporta la ecuación 3 para la entidad de Jalisco (c), pues sobreestima ligeramente los datos en diámetros menores a 37 cm, mientras que categorías de 38 a 69 se observa la subestimación; en diámetros mayores a 70 sucede todo lo contrario, tomando valores de -0.20. En la Ciudad de México (d), el margen de error notable se presenta en diámetros superiores a 40 cm, ya que subestiman el volumen con un error de 0.30 m3. Por otra parte, en Puebla (f) se observa que el modelo estima adecuadamente en categorías menores a 50 cm; mientras que en categorías de 55 a 78 cm tiende a subestimar el volumen hasta de 0.50 m3, de igual forma para diámetros mayores a 79 cm se observa una distribución con margen de error de -0.58 a 0.39 m3.
Evolución de la raíz del error medio cuadrático (REMC)
La ecuación de Spurr Potencial (Ec. 1) tiene en general un buen comportamiento sobre las clases diamétricas. Se observa que, para las entidades de Guerrero (a) e Hidalgo (b) en diámetros menores a 19 cm presentan errores mínimos; sin embargo, de 20 a 59 cm tiende a subir de forma constante; mientras que para categorías de 65 en el sitio a, presenta el error más alto 0.62 m3 y luego la curva disminuye con aproximación a cero. En el caso del sitio b, el punto más alto de error está en diámetro de 50 cm; y no tiene un comportamiento constante para el resto de las categorías; al igual que en Michoacán (e), donde el modelo prácticamente tiende a incrementar ligeramente hasta las categorías de 80 cm.
Para el caso de Tlaxcala (g) y Veracruz (h) se observa que en ambos sitios el error tiende a incrementar a medida que aumentan las categorías diamétricas, alcanzando su máximo error (0.65 m3) en diámetros de 65 cm (G) y 55 cm (0.77 m3) para el sitio h y, posteriormente, tienden a decrecer.
En cuanto a la ecuación de Schumacher y Hall (Ec. 3) para la zona de Jalisco (c) se observa que el error mayor se presenta en las categorías de 65 cm, ya que alcanza un error de 0.65 m3. Esto también se puede apreciar en los sitios de la Ciudad de México (d) y Puebla (f), donde los errores crecen ligeramente conforme aumentan las categorías diamétricas; aunque no se ve afectada en gran medida la estimación, ya que la mayoría de los árboles son de categorías menores a 70 cm, tal como se muestra en el estudio realizado por Pineda-López et al. (2013), en el que la mayoría de los árboles se encuentran diámetros de 10 a 35 cm.
DISCUSIÓN
La bondad de ajuste de las ecuaciones analizadas resultó altamente significativa (p<0.0001), por lo que la información generada es adecuada para su aplicación en las áreas de estudio. En efecto, varios estudios de caso muestran que con las ecuaciones aditivas es posible estimar el volumen total (Ecs. 1-7 y 3-7) (Fang y Bailey, 2001; Özçelik y Göçeri, 2015). Este ajuste simultaneo permitió obtener predicciones consistentes debido a la flexibilidad (Tang et al., 2016; Hernández-Ramos et al., 2017a) con excepción para las entidades de Tlaxcala y Veracruz.
Con las ecuaciones generadas se logra una mayor precisión y se evita pérdidas económicas que en ocasiones ocurren a partir de las sub o sobreestimaciones (Vásquez-Bautista et al., 2016). Bajo esta perspectiva, la ecuación de Schumacher y Hall (1933), y de Spurr Potencial fueron las mejores; mismas que son respaldadas por otros autores (Parresol et al., 1987; Fang y Bailey, 2001; Özçelik y Göçeri, 2015; Hernández-Ramos et al., 2017b) en estudios similares.
Los resultados obtenidos por Vargas-Larreta et al. (2017) sobre esta especie se encuentran disponibles en la plataforma digital denominado Sistema Biométrico Forestal (SiBiFor, 2016); donde las ecuaciones están clasificadas para 21 UMAFOR en las entidades de estudio. En esta se observa que, en la bondad de ajuste, el coeficiente de determinación (R2 adj) supera el 96 % y la raíz del error medio cuadrático (REMC) es menor a 0.49 metros en promedio, todas con la ecuación de Schumacher y Hall (Ec. 3). Ante esta circunstancia se planteó buscar una regresión que permitiera obtener resultados similares o superiores a nivel entidad o nacional. Por lo que en este análisis se llegó a la conclusión de que estadísticamente no existen diferencias en cuanto a la bondad de ajuste en comparación con el SiBiFor (2016); por lo cual, el modelo de Spurr Potencial (Ec. 1) fue el más aceptado en la mayoría de los casos, que presentó en promedio un R2 adj superior a 93 % y una REMC de 0.47 metros; seguido por la expresión 3, que presentó un R2 adj de 96 % y una REMC de 0.45 metros. Por lo tanto, es posible ampliar el uso de las ecuaciones a nivel de entidad sin problema, independientemente de la variedad de las masas en distintos sitios (Kitikidou et al., 2017).
La respuesta a la buena bondad de ajuste de ambas ecuaciones se debe a que biológicamente son flexibles en su aplicación por tener pocos parámetros (Vanclay, 1994, Fernández et al., 2011), además de describir de forma geométrica el árbol (Spurr, 1952; Tlaxcala-Méndez et al., 2016). Otra ventaja es que estas ecuaciones son válidas para modelar especies tropicales (Cruz-Cobos et al., 2016; Mayaka, et al., 2017), templadas o latifoliadas (Crecente-Campo et al., 2014); además, cumple con la condición, cuando el modelo pasa al origen, el volumen tiende a cero si la variable independiente es cero (Prodan et al., 1997); también al ser menos complejas y de cumplir con los supuestos de regresión generan ganancias significativas (Salas et al., 2005; Honorato-Salazar, 2011; Barrios et al., 2014).
Estos casos de estudios se encuentran en los trabajos de Akindele y LeMay (2006) en Nigeria; así como en plantaciones de Eucalyptus grandis en Salento, Quindío de Bogotá, y Populus spp. en el Delta del Paraná, Argentina (Fernández et al., 2011); modelada por la ecuación 3 (Barrios et al., 2014). Por otra parte, Da Cunha y Guimarães-Finger (2009) optó por la ecuación 1 para estimar el volumen de Pinus taeda en Brasil, donde obtuvo un R2 adj de 0.98. Otra evidencia se encuentra en la investigación de Hernández-Ramos et al. (2017b) en la que se señalan que las ecuaciones 1 y 3 fueron las mejores para la estimación de volumen en Eucalyptus urophylla y de Swietenia macrophylla (Hernández-Ramos et al., 2018); ambas en México.
Así mismo, la ecuación 3 modeló a las especies de Arbutus spp (Cruz-Cobos et al., 2016); al igual que para 12 especies en Durango según Simental-Cano et al. (2017). Esto complementa el trabajo de Tapia y Návar (2011), donde señalan, que obtuvieron buenas estimaciones (R2 adj 0.95 y REMC es 0.13) para volumen total y comercial de Pinus pseudostrobus de la Sierra Madre Oriental del estado de Nuevo León; además, es idónea para las especies Pinus lawsonii y P. oocarpa en la sierra Purépecha, Michoacán (Ramos-Uvilla et al., 2014).También, se puede constatar con el trabajo de Vásquez-Fabian et al. (2017) para la especie.
CONCLUSIÓN
Las ecuaciones generadas permiten evaluar parcial o totalmente el volumen de la masa forestal de sitios de interés. De acuerdo a la bondad de ajuste y del análisis gráfico para estimar el volumen total árbol (vta), la ecuación de Spurr Potencial fue seleccionada para las entidades de Guerrero, Hidalgo, Michoacán, Tlaxcala y Veracruz. De igual forma, el modelo de Schumacher fue seleccionado para ser utilizada en los sitios de Jalisco, Ciudad de México y Puebla. Para las ciudades de Tlaxcala y Veracruz se estimó el volumen rollo total árbol (vrta) debido a que no se tuvo información suficiente de las ramas.
Acknowledgements
AGRADECIMIENTOS
Los autores agradecen al coordinador del proyecto Desarrollo de un sistema biométrico para la planeación del manejo forestal sustentable de los ecosistemas con potencial maderable en México, dirigido por el doctor Benedicto Vargas Larreta, investigador titular del Instituto Tecnológico de El Salto, Durango, por facilitar la información de campo. De igual forma, se le agradece al Consejo Nacional de Ciencia y Tecnología (Conacyt) por apoyo económico en la etapa de formación académica.
REFERENCIAS
Licencia
Colombia Forestal conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional por lo cual se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que:
Se reconozcan los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).